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Given a discrete sample of event locations, we wish
to produce a probability density that models the
relative probability of events occurring in a spatial
domain. Standard density estimation techniques do
not incorporate priors informed by spatial data.
Such methods can result in assigning significant
positive probability to locations where events cannot
realistically occur. In particular, when modelling
residential burglaries, standard density estimation
can predict residential burglaries occurring where
there are no residences. Incorporating the spatial data
can inform the valid region for the density. When
modelling very few events, additional priors can help
to correctly fill in the gaps. Learning and enforcing
correlation between spatial data and event data can
yield better estimates from fewer events. We propose
a non-local version of maximum penalized likelihood
estimation based on the H' Sobolev seminorm
regularizer that computes non-local weights from
spatial data to obtain more spatially accurate density
estimates. We evaluate this method in application to a
residential burglary dataset from San Fernando Valley
with the non-local weights informed by housing data
or a satellite image.
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1. Introduction

In real-world applications, satellite images, housing data, census data and other types of
geographical data become highly relevant for modelling the probability of a certain type of event.
The methodology presented here provides us a general framework paired with fast algorithms
for incorporating external information in density estimation computations.

In density estimation, one is given a discrete sample of event locations, drawn from some
unknown density u on the spatial domain, and tries to approximately recover u [1]. Relating
the events to the additional data allows one to search over a smaller space of densities, which
can yield more accurate results with fewer events. We refer to the additional data source as the
function g(x) defined over the spatial domain 2. We may typically assume two things about
the relationship between g and u: (i) g informs the support of u via g(x) =0 = u(x) =0 and (ii) u
varies smoothly with g in a non-local way (explained below). This method allows the additional
information in g to significantly improve the recovery of u.

(a) Maximum penalized likelihood estimation

Although there are other classes of methods in the density estimation literature that are quite
popular (such as average shifted histogram and kernel density estimation [2]), in this work
we shall focus on maximum penalized likelihood estimation (MPLE). MPLE provides a general
framework for finding an approximate density from sampled events. The likelihood of events
occurring at the locations {x;}i_; according to a proposed probability u is the product of the
probability evaluated at each of those locations:

n
L, {xy) =] ux).
i=1
MPLE approximates u as the maximizer of a log-likelihood term combined with a penalty term,
typically enforcing smoothness [3],

n
fl= argmax Z log(u(x;)) — P(u).
u=0, [, udx=1 ;=1

Without some kind of penalty term, the solution is just a weighted sum of Dirac deltas located
at the training samples. Typical choices of P(u) include the total variation (TV) norm, P(u)=
* [ o |Vuldx, and the H! Sobolev seminorm, P(u) = (1/2) Jo |Vu|? dx. Here X is the parameter that
controls the amount of regularization. This is typically chosen via cross-validation, when it is
computationally feasible.

(b) Maximum penalized likelihood estimation applied to crime

The H' seminorm is a common, well-understood regularizer in image processing related to
Poisson’s equation, the heat equation and the Weiner filter, producing visually smooth surfaces.
For this reason, it is often a default choice when little is known about the data being modelled.
H' MPLE has further justification in crime density estimation from the ‘broken window” effect
[4-6]. This observation states that, after a burglary has occurred at a given house, burglaries are
more likely to occur at the same house or nearby houses for some period of time afterwards.
Initial burglaries give criminals information about what valuables remain and the schedule of
inhabitants in the area. Additionally, a successful burglary leaves environmental clues, such as
broken windows, that indicate that an area is more crime-tolerant than others. This effect leads
to repeat and near-repeat burglaries. More generally, criminals tend to move in a bounded region
around a few key nodes and have limited awareness of potential for criminal activity outside of
familiar areas [7-9]. Within neighbourhoods, risk factors are typically homogeneous [10-12]. All
of this explains why observed incidence rates of burglaries are locally smooth.
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However, local smoothness is not always appropriate, and in practice there is much room
for improvement. In recent years, several studies on the application of MPLE to crime data
[13-15] emphasize the fact that crime density should have boundaries corresponding to the local
geography. Mohler ef al. [13] and Kosti¢ et al. [15] model this by choosing penalty functions that
are edge-preserving, TV and Ginzburg-Landau, respectively. Smith et al. [14] more closely follow
the idea presented here. That work introduces a modified H' MPLE, which based the penalty
term on an additional component of the data. The method assumes that the valid region of the
probability density estimate is known a priori. In their application to residential burglary, the valid
region was the approximate support of the housing density in the region. If we denote the valid
region by D, then the modified penalty term is just a standard H' MPLE with a factor z2 in the
integral, where z is a smooth Ambrosio—Tortorelli approximation of (1 — 8(dD)):

X 1 .
il = argmin 5 LZ zfqul2 dx — Z log(u(x;)),

u=0, [ 5 u=1 i=1

1 ifd(x,dD) > e,
Ze(x) = .
0 ifxeaD.

(c) Graph-based methods

In spectral graph theory, data are represented as nodes of a weighted graph, where the weight on
each edge indicates the similarity between the two nodes. Such data structures have been very
successfully applied to data clustering problems and image segmentation [16-18]. The standard
theory behind this is described in [19,20] and a tutorial on spectral clustering is given in [21].
A theory of non-local calculus was developed first by Zhou & Schélkopf in 2004 [22] and putin a
continuous setting by Gilboa & Osher in 2008 [23]. Such methods were originally used for image
denoising [23,24], but the general framework led to methods for inpainting, reconstruction and
deblurring [25-29]. Compared with local methods, non-local methods are generally better able to
handle images with patterns and texture. Further, by choosing an appropriate affinity function,
the methods can be made suitable for a wide variety of different datasets, not just images.

In this article, we present non-local (NL) H' MPLE, which modifies the standard H! MPLE
energy to account for spatial inhomogeneities, but unlike Smith ef al. [14], we do so in a non-local
way, which has the benefit of leveraging recent fast algorithms and the potential to generalize to
other applications.

The organization of this article is as follows. In §2, we introduce the NL H 1 MPLE method and
review the non-local calculus and numerical methods on which it is based. In §3, we demonstrate
the advantages of NL H' MPLE by comparing it with standard H' MPLE when applied to
modelling residential burglary. In §4, we summarize our conclusions and discuss directions for
future research.

2. Non-local crime density estimation

We propose replacing the H! seminorm regularizer of H' MPLE with a linear combination of an
H1 regularizer and a non-local smoothing term H axo Vwsu(x, y))2 dx dy, where Vs denotes the
non-local symmetric-normalized gradient depending on an affinity function w derived from the
spatial data, g. More details are found in §2b. The energy we optimize is thus

il = argmax Z log(u(x;)) — « ﬂ (Va,su(x, y))2 dxdy — g
2x82

J [Vu(x)|? dx. (2.1)
u=0, fn u=1 ;-1 2
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The non-local term in equation (2.1) is tolerant of sharp changes in the probability density
estimate, as long as they coincide with sharp non-local changes in the spatial data. The
mathematical formulation of this statement follows from the definitions presented in the
following sections and is presented in appendix A. Before reviewing the non-local calculus behind
this energy, we motivate why a non-local regularizer is good for crime density estimation. Many
cities grow in a dispersal colony-like fashion, i.e. colony patches start growing at dispersed
locations at the same time with the same architectural or cultural model as a starting point,
generating non-local similarities [30]. Dissimilar colony patches grow and meet to form diffuse
interface-like boundaries [31]. Thus, housing data typically contain similar features spread across
the domain, along with interfaces between different types of areas. Whereas opposite sides of
these interfaces are spatially close, they are non-locally well separated.

The clearest advantage of non-local regularization is that it allows for sharp changes in
crime density across interfaces of distinct housing regions. In particular, because the residential
areas are non-locally well separated from the non-residential areas, the non-local regularized
estimate correctly captures the support of the residential burglary density. This feature has been
studied for its own sake in prior work, and non-local regularization addresses it in an automatic,
hands-off way.

Another, more subtle advantage of non-local regularization is that it encourages distant, but
non-locally similar regions (e.g. colony patches based on the same model) to have similar crime
density values. The assumption is that the layout of a neighbourhood and its crime density are
both tied to underlying socio-economic factors. When one has these relevant factors, one can
perform risk terrain modelling [12], combining the factors in the way that is most consistent with
the observed data. Non-local regularization implicitly measures correlation between housing
features and levels of crime, presumably explained by these unknown factors. The regularization
encourages those relationships to remain consistent across the entire domain and all data. In this
work, we base the non-local similarity of two locations on the similarity of surrounding housing
density patches. For the sake of simplicity, one could consider basing it on only the housing
density in the immediate vicinity. This would encourage the crime density to be a smooth function
of the immediate housing density. Probably, one would estimate residential burglaries as roughly
proportional to the housing density. This would be a simple, but reasonable null model, assuming
that burglary depends heavily on opportunity. One would balance the spatial smoothness
and smoothness as a function of housing density with cross-validation, allowing for varying
results depending on what the data show. Our non-local weights are based on housing density
patches, which makes them more noise-robust and representative of more complex housing
features. This approach is general, relates to previous work in image processing and produces
favourable results.

(@) Non-local means

The technique of non-local means was originally developed for the application of image
denoising, but can also be interpreted as an affinity function. The formula for the non-local means
affinity, wim, is given by [24]

(Kp# [Im(x + ) = Im(y + -)IZ)(0)>‘ 2.2)

Wim (¥, y) =exp ( 5

o
Here, Im is the image on which the non-local means weights are based, K; is a non-negative
weight kernel of size (2r 4+ 1) x (2r+ 1) and o is a scaling parameter. This function measures
similarity between two pixels based on a weighted ¢? difference between patches surrounding
them in the image. In our experiments, the image Im is either a housing image or a satellite image.
In practical settings, computing and storing all function values of w is a very computationally
intensive task, so we use the fast approximation: Nystréom’s extension (see §2d).
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(b) Non-local calculus and graphs

Non-local calculus was introduced in its discrete form by Zhou & Schélkopf [22] and put in a
continuous framework by Gilboa & Osher [23]. In these definitions, w(x,y) is a general non-
negative symmetric affinity function, which generally measures similarity between the points
xand y.

Let 2 CR”, and u(x) be a function u: £2 — R. Then, the non-local gradient of u at the point
x € §2 in the direction of y € £2 is given by

(Var)(x, y) = (u(y) — u(x)),/ w(x, y).

This suggests an analogous generalization of divergence, which in turn leads to the following
definition of the non-local Laplacian:

Awit(x) =L2 () — (), v) dy. 2.3)

Now, let {p;}I_; be a discrete subset of £2 and let wij = w(pj, pj) if i #j and w; = 0. We then let
{pi}i_; be vertices and wj; the edge weights on a weighted graph. Let d; = Z;':l wjj be the weighted
degree of the ith node. Then, the graph Laplacian applied to the function on the graph, u, is given
by Lu where

di  ifi=j, .
Li= andso (Lu)i= ) (uj — ujw;.

/ {—wij otherwise, ' ]:Zl ' 7

To keep the spectrum of the graph Laplacian in a fixed range as the number of samples
in increased, and thus to guarantee consistency, we must normalize the graph Laplacian.
See Bertozzi & Flenner [32] for a more in-depth discussion of this. We use the symmetric
normalization.
d; ifi=j,

Lsym::Dil/ZLDil/ZI Dij: 0 otherwise
"W .

Because we express our energy as applied to functions over continuous domains, we also
introduce the following notation for the symmetric-normalized non-local gradient:

Vu(x, ]/)
(J o w(x,2)dz [ 5 w(y,z) dz)1/4

Vaw,st(x, y) =

(c) Numerical optimization

We must numerically find an approximate solution. The unconstrained energy has gradient flow

1 n
ur =aAysu + pAu + " ;8@ — Xj).
1=

We evolve this equation, projecting onto the space of probability densities after each step. We
discretize the equation as

1 n
i —ostymuk+1 + AU 4 = Z 8(x — x;).
i=1

Here, Aj, denotes the discrete Laplacian from the five-point finite difference stencil with mesh size
h=1. Solving for u**1 yields

5t &
yktl = I+ adtLeym — ﬂﬁtAh)71 (k E 8(x —x;) + uk)'
L
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Table 1. Non-local H' MPLE algorithm.

Nystrom (Img) — @, A: Leym ~ ® AP T
Initialize u° = 1/|82|, succDiff = oo, k = 0.
while succDiff > 1077 and k < maxSteps = 800

o k=k+1

N T a2
o 12 =g

Y
o b=fft2 |:uk_1/2 + =i Za(x - xi)i|
i=1

b; .

= T opotmemz " 't
a1 =1 (guarantees integral 1 constraint)

o uF =ifft2(a)

o X = max (u¥,0)

o succDiff = |uX — uF=1)3/|uk |3

° 4 Fourier mode,

To approximate this, we use a split-time method:
st st &
Mk+1/2 = (1 + O[iLsym> (uk Zl 5(x — xi) + uk>
1=

st \Hf st &
k+1 _ (71 _ o k+1/2
and u _<I ;32Ah> <Mk+1/2 .Elﬁ(x X)) +u )
=

To apply these operators, we use a spectral method. This has two advantages over forming and
multiplying the matrices. First, we can approximate the projection onto the constraint by using
the spectral decomposition of the discrete Laplacian (shown in table 1). Second, the computation
required to form and apply the entire symmetric graph Laplacian is also intensive. Fortunately, we
can apply Nystrom’s extension (discussed in §2d), which is a popular method for approximating
a portion of the eigenvectors and eigenvalues that approximate the operator well. To project onto
the eigenvectors of Ay, we apply the two-dimensional fast Fourier transform.

In both the case of applying (I + oz((St/Z)Lsym)_1 and (I — B(8t/2)Ap)~1, we are applying
operators of the form (I + §¢P)~!, where P is symmetric and positive semidefinite. In general,
if P has spectral decomposition P = ® A®T, then we apply (I + 5tP)~! to w by first projecting onto
the eigenvectors, a = oTw, updating the coefficients a,; = ay, /(1 + 8tAs), and finally transforming
back to the standard basis, (I + StP)_lw = @a. We summarize the steps of our algorithm in table 1.

(d) Nystrom’s extension

To apply the spectral method described in the previous section, we need to approximate the
eigenvectors and eigenvalues of the symmetric graph Laplacian. Here, we present Nystrom’s
extension method and refer the reader to [25,32,33] for further discussion and analysis. Nystrom’s
extension is a technique for performing matrix completion, well known within the spectral graph
theory community. In this setting, Nystrom’s extension is applied to the normalized affinity
matrix Weym = D~1/2WD~1/2, where the (i, j)th entry of W is the affinity between nodes i and
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J- Note that the matrices Wsym and Lsym have the same eigenvectors, and A is an eigenvalue of
Weym if and only if 1 — 2 is an eigenvalue of Lsym.

We let N denote the set of nodes in our complete weighted graph, then take X to be a small
random sample from N, and Y its complement. Up to a permutation of the nodes, we can write
the affinity matrix as

W= Wxx Wxy
Wyx  Wyy )’

where the matrix Wyxy = WlT/X consists of weights between nodes in X and nodes in Y, Wxx
consists of weights between pairs of nodes in X, and Wyy consists of weights between pairs of
nodes in Y. Nystrom’s extension approximates the eigenvalues and eigenvectors of the affinity
matrix by manipulating the approximation:

2 Wxx -1
Wa W= WXX Wxx Wxy).
(Wyx) ( v)

This approximates Wyy ~ Wny;Ql(ny. The error due to this approximation is determined by
how well the rows of Wxy span the rows of Wyy. If the affinity matrix W is positive semidefinite,
then we can write it as a matrix transpose times itself: W = VTV. In [34], the authors show that
the Nystrom extension thus approximates the unknown part of V (corresponding to Wyy) by
orthogonally projecting it onto the range of the known part (corresponding to Wxy). In this
setting, it is clear that, as the size of X grows, the approximation improves. Further, a random
choice of X is likely to yield Wxy full rank if the rank of W is sufficiently large.

Next, we must incorporate the normalization factors into the above approximation. The
degrees are approximated by applying their definition to the approximation. Note that d; =
Z?:l wjj can also be written as d = W1,,, where 1, is the length-n vector of ones. This yields

dx = Wxx1x + Wxyly,

dy = Wyx1x + WYXW)_Ql(WXYl\Y|~

In this way, we approximate the degrees without forming any matrices of size larger than |X]| x
|Y|. Define also the vectors sy = d;(l/ 2 and Sy = d;l/ 2, Normalizing our approximation of W gives
A Wxx © (sxs¥) Wxy © (sxs1)
Wsym ~ Wsym = T -1 V)’

Wyx © (sysy)  (WyxWxxWxy) © (sysy)

where © denotes component-wise product. For notational convenience going forward, let us
define W;y;(n =Wxx © (st;r() and W;};m =Wxy © (sxs§).

In practice, one uses a diagonal decomposition of such a formula to avoid forming and
applying the full matrix. It follows from the analysis discussed in [33] that, if W;y;l is positive
definite, the diagonal decomposition of the approximation is given by Wsym =V AsVT, where

sym SYM 1 /2 1x/SYMq,,Sym ¢, ,Sym, _1/2
S=Wyx + Wy ) PWRy W W) ™2,

S has diagonal decomposition S = Us AsU?, and

sym

weym
V= [ xx } Wh Y2usag'?.
WYX
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Note that S is size | X| x |X| and V is size IN| x |X|. Their computation never requires computing or
storing matrices larger than size |[N| x |X]|. Thus, V is a matrix of |X| approximate eigenvectors of
Wsym with corresponding eigenvalues Ag. For more detailed discussion on Nystrém’s extension,
see [25,32,33].

(e) Cross-validation

Cross-validation is a methodology for choosing the smoothing parameter A which yields
probability densities that are predictive of the missing data [35]. Because our method consists
primarily of simple coefficient updates after mapping to different eigenspaces, it is fast relative to
methods with similar goals [14]. This speed increase allows us to perform 10-fold cross-validation,
which requires many evaluations of the density estimation method. In V-fold cross-validation,
we randomly partition the data points into V disjoint subsets X = U,‘;l X, with complements
X_p =X\X,. We let u; _, denote the density estimate using parameter A trained on the data X_,,.
The objective we minimize is an application of the Kullback-Leibler divergence, an asymmetric
distance measure for probabilities given by

Dxr(p,q)= Lz log (%) p(x) dx.

We select the parameter A that minimizes the average KL divergence between the density
estimates, 1), —,, and the discrete distributions on the withheld data points,

P =—— 3 8 —x).
Xl e,
This yields the following optimization:
1 \%4
A=argmin v Z Dx1(pv, 1y, —v)
A v=1
1 \%4
= arg;nax v Z Z log(13,—v(xi)).
v=1 X,‘EXU

The result can also be interpreted as maximizing the average log-likelihood that the missing
events are drawn from the corresponding estimated densities. We approximate this optimization
via a grid search (note that A = («, 8) is two-dimensional). The search requires the computation
of all the density estimates u;,_,. In particular, for 10-fold cross-validation, we must compute
10 x | values| x |8 values| densities.

When evaluating the energy, it is important to ensure that non-negativity and sum-to-unity
constraints hold strictly for the input densities. If a density is slightly negative somewhere, it
could add complex terms to the objective, and if a density has sum slightly larger than unity,
it could unfairly achieve a slightly higher objective. Further, in the strictest interpretation, if a
density has a value zero at the location of a missing event, the objective will take value —co. We
relax this penalty by replacing u; —, (x;) with max{u; —,(x;), 10163,

3. Numerical experiments

Here, we demonstrate the advantage of the NL H! MPLE method over standard H! MPLE by
evaluating its performance on residential burglary data from San Fernando Valley, Los Angeles,
CA, using corresponding housing data and a satellite image to inform the non-local weights.
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Figure 1. Top row: data. (a) 2005-2013 residential burglaries in San Fernando Valley (from LAPD). (b) San Fernando Valley
log(min(# housing units, 7) + 1) (from LA County Tax Assessor). (c) Satellite image of San Fernando Valley (from Google Maps).
Bottom three rows: MPLE of 50, 500 and 1000 random samples from 2008 residential burglaries. (d) Column 1: #" MPLE.
(e) Column 2: housing NL A" MPLE. () Column 3: satellite NL 4" MPLE. (Online version in colour.)

(a) Residential burglary

We perform experiments on residential burglary data from San Fernando Valley in 2005-2013,
getting substantially different results from those shown in [13-15]. In figure 1, we show the data
used (locations of residential burglaries in figure 1a, housing in figure 1b and satellite image in
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Table 2. Log-likelihood of densities on residential burglaries from 2009 to 2013 (corrected and raw). The maximum value in
each row is shown in jtalics.

training dataset (corrected) scaled histogram housing NL 4’

50 random from 2008 —3.6039 x 10° —1.3386 x 10° —1.3396 x 10°

2005-2008 —2.6847 x 10° —13121 x 10° —1.2774 x 10°

training dataset (raw) scaled histogram H satellite NL A’

50 random from 2008 —3.6959 x 10° —13733 x 10° —1.3553 x 10°
e e
g ey s
e e
008 3mBx 3 <10 —13494 x 105
e D e
T e
e T P

figure 1c), and H L MPLE (figure 1d), housing-based NL H L MPLE (figure 1e) and satellite-based
NL H' MPLE (figure 1f) density estimates on increasing subsets of data from 2005 to 2008. To
evaluate performance, we compute the log-likelihood of each density on the residential burglaries
from 2009 to 2013 (shown in table 2).

As one would predict, the locations of residential burglaries in figure 1a are primarily restricted
to the support of the housing density image in figure 1b. There are some locations in the burglary
dataset that correspond to locations with no residences (4173 events out of 23725 total), which
we attribute to imprecision in the burglary data. Most such misplaced events occur on streets,
suggesting that the actual event took place at a residence facing that street. Because of this
inconsistency between the datasets, for the experiments that use the housing data, we adjust the
residential burglary data for training and testing (for both H' and NL H'), moving each event
to the nearest house if it is within two pixels, and dropping the event otherwise. This results in
603 dropped events. For the experiments that do not use housing data, we work with the raw
burglary data for training and testing.

We implement H! MPLE by applying our algorithm, described in table 1, with & =0 and @ =
Id. We choose the value of the regularization parameter g for each training dataset by performing
10-fold log-likelihood cross-validation, searching over g=[0, 10. ~(-2:8)]. We apply H!
MPLE to both the raw and corrected burglary data.

For housing-based NL H! MPLE, we perform Nystrém’s extension with non-local means
applied to g, the housing density image shown in figure 1b. We use 400 random samples for
Nystrom’s extension. We use the first 300 eigenvectors and eigenvalues in our computations.
The non-local means weights are based on differences between patches of size 11 x 11 and
o =1-std(g), the standard deviation of the housing image. The weight kernel K, r =5, is given
as follows:

i 1 1§ 1 -
(A +r+i, +r+])_; Z —, Lj=—T,...,T.

2d +1)2’
d=max(|i\,|j\/1)( +1)
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To choose the regularization parameters o and B, we perform 10-fold log-likelihood cross-
validation, searching over «=[0,10.7(-2:12)] and B=[0, 10.7(-2:8)]. We apply
housing NL H! MPLE to the corrected burglary data.

For satellite-based NL H' MPLE, we perform Nystrém’s extension with non-local means
applied to g, the Google Maps image shown in figure 1c. In applying non-local means to a
colour image, we interpret the image as a vector-valued function with three components (one
for each colour channel) and so, in equation (2.2), the expression [Im(x + -) — Im(y + )12 has size
(2r +1) x (2r + 1) x 3. We use 800 random samples for Nystrom’s extension. We use the first 600
eigenvectors and eigenvalues in our computations. The non-local means weights are based on
differences between patches of size 11 x 11and o =1 - std(g), the standard deviation of the Google
Maps image. The weight kernel is as in the previous case, but repeated on each colour channel.
To choose the regularization parameters o and B for each training set, we perform 10-fold log-
likelihood cross-validation, searching over o =[ 0, 10. ~(-2:12)] and p=[0, 10. *(-2:8)].
We apply satellite NL H! MPLE to the raw burglary data.

The H' MPLE results transition from a completely smooth uniform density to a probability
density with more apparent structure as the amount of training data increases. The NL H!
MPLE housing and satellite results exhibit a similar trend, but are able to better approximate
the correct support of the density with many fewer data points. The measurable benefit of non-
local smoothing is shown by the log-likelihood values in table 2. NL H! generally gets higher
log-likelihood than H'. This means that the densities estimated by housing NL H! on corrected
2005-2008 data are more congruous with the corrected 2009-2013 data than the H! densities, and
the densities estimated by satellite NL H! on raw 2005-2008 data are more congruous with the
raw 2009-2013 data than the H' densities.

The added complexity of our algorithm results in an increase in run time from the standard
H' MPLE, but the difference is not too substantial. We compare run times on a laptop with one
Intel core i7 processor that has two cores with processor speed 2.67 GHz and 4GB of memory.
The run time for Nystrom applied to the housing image is typically about 17s. The run time
for Nystrom applied to the satellite image is typically about 36s. For cross-validation purposes,
Nystrom can be run once outside of the loop and the results used for all combinations of datasets
and parameters. The run time for H' MPLE with parameters as chosen by cross-validation on the
residential burglaries from 2005 to 2008 is typically about half a second. The run time for housing
NL H' MPLE with parameters as chosen by cross-validation on the residential burglaries from
2005 to 2008 is typically about 2.3s. The run time for satellite NL H! MPLE with parameters as
chosen by cross-validation on the residential burglaries from 2005 to 2008 is typically about 1.5s.
The cross-validation run times depend on what range of parameters are being tested, but can
easily be run in parallel across several computing nodes.

(b) Synthetic density

To further verify that NL H' MPLE is correctly performing density estimation, we test the
method’s ability to recover a given density. We start with a known density, draw events from
it and attempt to recover it. Because the method assumes a relationship between the spatial data
g and the density 1, we generate a synthetic density that is closely related to the housing data,
shown in the bottom left of figure 2. This density is given by taking a random linear combination
of the first five approximated eigenvectors of the graph Laplacian (with weights based on the
housing image) and then shifting and normalizing the result to yield a probability density. The
coefficients are chosen uniformly at random in [0, 1] and the non-local weights are based on the
housing data as they were in the previous section. This randomly generated density was chosen
over others because it looks like a potential probability density for residential burglary. It should
be noted that this choice of synthetic density is quite ideal for the proposed method. The hope is
that very good density recovery of ideal probability densities extends to good density recovery of
less ideal probability densities.

o2 S


http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on January 6, 2015

Figure 2. Synthetic density recovery (see §3b). Top row: density estimates based on 400 samples from synthetic density.
|error|:H'7.12473 x 108, NLH'5.26617 x 10~5,NLH" restricted 2.55042 x 10~°.Bottom row: synthetic density and density
estimates on 4000 samples. [error|: A" 5.05662 x 1076, NL A 2.52831 x 10~ , NL A" restricted 1.36416 x 106, (Online
version in colour.)

We sample the events according to this density by generating numbers uniformly at random
in [0,1] and inverting the cumulative distribution function associated with the density. In the top
row of figure 2, we show the H! MPLE result on the 400 events (8 =5 x 10%), the housing NL
H! MPLE result on the 400 events (o« =100, 8 =0) and the NL H! MPLE result on 400 events
restricted to the first five eigenvectors. In the bottom row of figure 2, we show the synthetic
density, the H' MPLE result on the 4000 events (8 =10°), the housing NL H' MPLE result on
the 4000 events (« =10%, 8 =0) and the NL H! MPLE result on 4000 events restricted to the
first five eigenvectors. In all the cases, smoothing parameters were chosen to minimize the mean
absolute error of the probability density. The NL H! results and the restricted NL H! results do
a substantially better job at recovering the probability density than H! MPLE. This is expected
of course, from the construction of the probability. The comparison merely suggests that, if the
correct density is well approximated by a combination of eigenvectors of the graph Laplacian,
enforcing non-local smoothness can substantially improve recovery of the density. Itis, in general,
difficult to determine when a density is well approximated by a graph Laplacian’s eigenbasis. The
assumption is that the primary and non-local data have some meaningful, consistent connection.
We refer the reader to §2 for heuristics on this connection and the appendix for some more precise
formulations. It is also worth noting that, if unrelated non-local data are used, cross-validation
will probably yield « = 0, reverting the model back to standard H! MPLE.

4. Conclusion and future work

In this paper, we have looked at the problem of obtaining spatially accurate probability density
estimates. The need for new approaches is demonstrated by the inadequate performance of
standard techniques such as H! MPLE.

Our proposed solution accomplishes this by incorporating a non-local regularity term based
on the H' regularizer and non-local means, which fuses geographical information into the density
estimate. Our experiments with the San Fernando Valley residential burglary dataset demonstrate
that this method does yield a probability density estimate with the correct support that also gives
favourable log-likelihood results. Further, our results based on the Google Maps image suggest
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that we can apply NL H' MPLE to a wide variety of geographical regions without obtaining
specialized geographical data.

There are several other aspects of this and related problems to explore. In general, testing the
method on other datasets would be interesting. This may present the added challenge of dealing
with other types of geographical information, because high-resolution housing density data may
not be readily available. In modelling the density of other types of events, the geographical data
may not be related to housing at all. As the problem dictates, the non-local weights can be replaced
with whatever weights seem appropriate for the data at hand. We have yet to incorporate time,
leading indicators of crime, or census data into the model. Any of these could further improve
results and allow one to use density estimation in place of risk terrain modelling.

Finally, our method need not stand alone. Several sophisticated spatio-temporal models for
probabilistic events make use of density estimation, typically using the standard methods [36-38].
By replacing the standard density estimation techniques with a non-locally regularized MPLE
such as ours, the density estimates in these models could improve, thus improving the overall
result of the resulting simulation.
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Appendix A

To examine the effect of the non-local regularization term, we compute an alternative formulation
of the NL H! MPLE problem and derive an inequality that solutions must satisfy. Recall from
equation (2.1) that NL H! MPLE applied to the event samples X = {x;}i_, with parameters &, 8 > 0
is given by the following optimization:

B

n
Uy gX = argmax Z log(u(x;)) — o ﬂg o (Va,su(x, y))2 dxdy — >

J |Vu(x)|? dx.
u=0, [ou=1 ;=1 2

For every such X, @, B, one can show that there exist non-negative constants C; and C, such that
Uy p,x is also the solution to a more constrained optimization:

n
Uy g,X = argmax Z log(u(x;)) subject to
i=1
{u >0, J u=1, H (Vasti(x,y))> dx dy < Cy, 1 J [Vu(x)* dx < cz} . (A1)
o) 2x2 2]

It can further be shown that, for X and g > 0 fixed, C; is a non-increasing function of « >0 and,
for X and « > 0 fixed, C; is a non-increasing function of g > 0.

Any solution of equation (A1) satisfies [[ o, o(Vasu(x, y))2 dxdy < Cy, and likewise in the
discrete setting we have the following:

> i —w)? Y<qy.
ijeR \/did;

Thus, for some non-negative discrete function f : 2 x 2 — R20 with Zi,je o fii < (1, we have the
following:

d;d;

VijeR, (u—u)<f; (A2)
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Recalling that, in our application, we set the weights w;; to be non-local means applied to a
housing image, ¢: £2 — R, we can interpret what this means. Up to some factors constrained by
the parameter Cy, the squared difference between the density at pixels i and j is bounded by

/didj/wjj. Thus, the bound is made restrictive when: d; and d; are small, which means the patches

of ¢ around pixels i and j are very different from the rest of the image; and when wj; is large, which
means the neighbourhoods of g around pixels i and j are similar to each other.
It is also worth noting that, by constraint, the left-hand side of (A 2) is always smaller than or

equal to 1. Thus, for the inequality to be non-trivial, we must have fj; <w;;/,/d;d; for some pair

i,j € 2. Thus, C1; must be sufficiently small (or « sufficiently large) in order to guarantee that the
non-local smoothing will have any effect on u.
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