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Abstract. In this article we identify social communities among gang members in the Hollenbeck
policing district in Los Angeles, based on sparse observations of a combination of social interactions
and geographic locations of the individuals. This information, coming from Los Angeles Police De-
partment (LAPD) Field Interview cards, is used to construct a similarity graph for the individuals.
We use spectral clustering to identify clusters in the graph, corresponding to communities in Hol-
lenbeck, and compare these with the LAPD’s knowledge of the individuals’ gang membership. We
discuss different ways of encoding the geosocial information using a graph structure and the influence
on the resulting clusterings. Finally we analyze the robustness of this technique with respect to noisy
and incomplete data, thereby providing suggestions about the relative importance of quantity versus
quality of collected data.
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1. Introduction. Determining the communities into which people organize them-
selves is an important step toward understanding their behavior. In diverse contexts,
from advertising to risk assessment, the social group to which someone belongs can
reveal crucial information. In practical situations only limited information is avail-
able to determine these communities. Peoples’ geographic location at a set of sample
times is often known, but it may be asked whether this provides enough information
for reliable community detection. In many situations social interactions also can be
inferred from observing people in the same place at the same time. This information
can be very sparse. The question is how to get the most community information out
of these limited observations. Here we show that social communities within a group of
street gang members can be detected by complementing sparse (in time) geographical
information with imperfect, but not too sparse, knowledge of the social interactions.
First we construct a graph from Los Angeles Police Department (LAPD) Field Inter-
view (FI) card information about individuals in the Hollenbeck policing area of Los
Angeles, which has a high density of street gangs. The nodes represent individuals and
the edges between them are weighted according to their geosocial similarity. When
using this extremely sparse social data in combination with the geographical data,
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68 VAN GENNIP ET AL.

the eigenvectors of the graph display hotspots at major gang locations. However, the
available collected social data is too sparse and the social situation in Hollenbeck too
complex (communities do not necessarily proxy for gang boundaries) for the result-
ing clustering, constructed using the spectral clustering algorithm, to identify gangs
accurately. Extending the available social data past the current sparsity level by arti-
ficially adding (noisy) ground truth consisting of true connections between members
of the same gang leads to quantitative improvements of clustering metrics. This shows
that limited information about peoples’ whereabouts and interactions can suffice to
determine which social groups they belong to, but the allowed sparsity in the social
data has its limits. However, no detailed personal information or knowledge about
the contents of their interactions is needed. The sparsity in time of the geographical
information is mitigated by the relative stability in time of the gang territories.

The case of criminal street gangs speaks to a more general social group clas-
sification problem found in both security- and non-security-related contexts. In an
active insurgency, for example, the human terrain contains individuals from numerous
family, tribal, and religious groups. The border regions of Afghanistan are home to
perhaps two dozen distinct ethnolinguistic groups and many more family and tribal
organizations [20]. Only a small fraction of the individuals are actively belligerent,
but many may passively support the insurgency. Since support for an insurgency is
related in part to family, tribal, and religious group affiliations, as well as more gen-
eral social and economic grievances [21], being able to correctly classify individuals to
their affiliated social groups may be extremely valuable for isolating and impacting
hostile actors. Yet, on-the-ground intelligence is difficult to collect in extreme security
settings. While detailed individual-level intelligence may not be readily available, ob-
servations of where and with whom groups of individuals meet may indeed be possible.
The methods developed here may find application in such contexts.

In non-security contexts, establishing an individual’s group affiliation and, more
broadly, the structure of a social group can be extremely costly, requiring detailed
survey data collection. Since much routine social and economic activity is driven by
group affiliation [7], lower-cost alternatives to group classification may be valuable for
encouraging certain types of behavior. For example, geotagged social media activity,
such as Facebook, Twitter, or Instagram posts, might reveal the geosocial context
of individual activities [41]. The methods developed here could be used to establish
group affiliations of individuals under these circumstances.

This paper applies spectral clustering to an interesting new street gang data set.
We study how social and geographical data can be combined to have the resulting
clusters approximate existing communities in Hollenbeck, and we investigate the lim-
itations of the method due to the sparsity in the social data.

2. The setting. Hollenbeck (Figure 1, left) is bordered by the Los Angeles
River, the Pasadena Freeway, and areas which do not have rivaling street gangs [31].
The built and and natural boundaries sequester Hollenbeck’s gangs from neighboring
communities, inhibiting socialization. In recent years quite a few sociological papers,
e.g., [35, 31, 34], and mathematical papers, e.g., [18, 24, 17, 33], on the Hollenbeck
gangs have been produced, but none in the area of gang clustering.

The recent social science/policy research on Hollenbeck gangs has combined both
the geographic and social positions of gangs to better understand the relational nature
of gang violence. Clustering gangs in terms of both their spatial adjacency and their
position in a rivalry network has shown that structurally equivalent [40] gangs expe-
rience similar levels of violence [31]. Incorporating both the social and geographical
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COMMUNITY DETECTION USING SPARSE GEOSOCIAL DATA 69

Fig. 1. Left: Map of gang territories in the Hollenbeck area of Los Angeles. Right: LAPD FI
card data showing average stop location of 748 individuals with social links of who was stopped with
whom. See online article for color version of this figure.

distance into contagion models of gang violence provides a more robust analysis [34].
Additionally, ecological models of foraging behavior have shown that even low levels
of intergang competition produce sharply delineated boundaries among gangs with
violence following predictable patterns along these borders [4]. Accounting for these
sociospatial dimensions of gang rivalries has contributed to the design of successful
interventions aimed at reducing gun violence committed by gangs [35]. An evaluation
of this intervention demonstrated that geographically targeted enforcement of two
gangs reduced gun violence in the focal neighborhoods. The crime reduction benefits
also diffused through the social network as the levels of violence among the targeted
gangs’ rivals also decreased.

In this article we use one year’s worth (2009) of LAPD FI cards. These cards are
created at the officer’s discretion whenever an interaction occurs with a civilian. They
are not restricted to criminal events. Our data set is restricted to FI cards concerning
stops involving known or suspected Hollenbeck gang members.1 We further restricted
our data set to include only the 748 individuals (anonymized) whose gang affiliation is
recorded in the FI card data set (based on expert knowledge). These affiliations serve
as a ground truth for clustering. From each individual we use information about the
average of the locations where they were stopped and which other individuals were
present at each stop (Figure 1, right) in our algorithm.

3. The method. We construct a fully connected graph whose nodes represent
the 748 individuals. Every pair of nodes i and j is connected by an edge with weight

Wi,j = αSi,j + (1− α)e−d2
i,j/σ

2

,

1In the FI card data set for some individuals certain data entries were missing. We did not
include these individuals in our data set.
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70 VAN GENNIP ET AL.

where α ∈ [0, 1], di,j is the standard Euclidean distance between the average stop
locations of individuals i and j, and σ is chosen to be the length which is one stan-
dard deviation larger than the mean distance between two individuals who have been
stopped together.2 The choice of Gaussian kernel for the geographic distance depen-
dent part of W is a natural one (since it models a diffusion process), setting the width
of the kernel to be the length scale within which most social interactions take place.
We encode social similarity by taking S = A, where A is the social adjacency matrix
with entry Ai,j = 1 if i and j were stopped together (or i = j) and Ai,j = 0 otherwise.
In section 6 we discuss some other choices for S and how the results are influenced
by their choice. Note that because of the typically nonviolent nature of the stops,
we assume that individuals that were stopped together share a friendly social connec-
tion, thus establishing a social similarity link. The parameter α can be adjusted to
set the relative importance between social and geographic information. If α = 0 only
geographical information is used; if α = 1 only social information is used.

Using spectral clustering (explained below) we group the individuals into 31 dif-
ferent clusters. The modeling assumption is that these clusters correspond to social
communities among Hollenbeck gang members. We study the question of how much
these clusters or communities resemble the actual gangs, as defined by each individ-
ual’s gang affiliation given on the FI cards. The a priori choice for 31 clusters is
motivated by the LAPD’s observation that there were 31 active gangs in Hollenbeck
at the time the data was collected, each of which is represented in the data set.3 In
Appendix B we briefly discuss some results obtained for different values of k. The
question of whether this number can be deduced from the data without prior assump-
tion —and if not, what that means for either the data or the LAPD’s assumption— is
both mathematically and anthropologically relevant but falls mostly outside the scope
of this paper. It is partly addressed in current work [19, 38] that uses the modularity
optimization method (possibly with resolution parameter) ([27, 26, 30] and references
therein) and its extension, the multislice modularity minimization method of [25].
We stress that our method clusters the individuals into 31 sharply defined clusters.
Other methods are available to find mixed-membership communities [22, 10], but we
will not pursue those here.

We use a spectral clustering algorithm [28] for its simplicity and transparency in
making nonseparable (i.e., not linearly separable) clusters separable. At the end of
this paper we will discuss some other methods that can be used in future studies.

We compute the matrix V , whose columns are the first 31 eigenvectors (ordered
according to decreasing eigenvalues) of the normalized affinity matrix D−1W . Here

D is a diagonal matrix with the nodes’ degrees on the diagonal: Di,i :=
∑748

j=1 Wi,j .
These eigenvectors are known to solve a relaxation of the normalized cut (Ncut)
problem [32, 42, 39] by giving nonbinary approximations to indicator functions for the
clusters. We turn them into binary approximations using the k-means algorithm [16]
on the rows of V . Note that each row corresponds to an individual in the data set and
assigns it a coordinate in R

31. The k-means algorithm iteratively assigns individuals

2Most results in this paper are fairly robust to small perturbations that keep σ of the same order
of magnitude (103 feet), e.g., replacing it by just the mean distance. The mean distance between
members of the same gang (computed using the ground truth) is of the same order of magnitude.
Another option one could consider is to use local scaling, such that σ has a different value for each
pair i, j, as in [44]. We will not pursue that approach here. Our focus will be mainly on the roles of
α and Si,j .

3The number of members of each gang in the data set varies between 2 and 90, with an average
of 24.13 and a standard deviation of 21.99.
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COMMUNITY DETECTION USING SPARSE GEOSOCIAL DATA 71

to their nearest centroid and updates the centroids after each step. Because k-means
uses a random initial seeding of centroids, in the computation of the metrics below
we average over 10 k-means runs.

We investigate two main questions. The first is sociological: Is it possible to
identify social structures in human behavior from limited observations of locations and
colocations of individuals and how much does each data type contribute? Specifically,
do we benefit from adding geographic data to the social data? We also look at how
well our specific FI card data set performs in this regard. The second question is
essentially a modeling question: How should we choose α and S to get the most
information out of our data, given that our goal is to identify gang membership of
the individuals in our data set? Hence we compute metrics comparing our clustering
results to the known gang affiliations and investigate the stability of these metrics for
different modeling choices.

4. The metrics. We focus primarily on a purity metric and the z-Rand score,
which are used to compare two given clusterings. For purity one of the clusterings
has to be assigned as the true clustering; this is not necessary for the z-Rand score.
In Appendix A we discuss other metrics and their results.

Purity is an often used clustering metric; see, e.g., [14]. It is the percentage
of correctly classified individuals, when classifying each cluster as the gang in the
majority in that cluster. (In the case of a tie, any of the majority gangs can be
chosen without affecting the purity score.) Note that we allow multiple clusters to be
classified as the same gang.

To define the z-Rand score we first need to introduce the pair counting quantity4

w11, which is the number of pairs which belong both to the same cluster in our k-
means clustering (say, clustering A) and to the same gang according the “ground
truth” FI card entry (say, clustering B); see, e.g., [23, 37] and references therein. The
z-Rand score zR [37] is the number of standard deviations by which w11 is removed
from its mean value under a hypergeometric distribution of equally likely assignments
subject to new clusterings Â and B̂ having the same numbers and sizes of clusters as
clusterings A and B, respectively.

Note that purity is a measure of the number of correctly classified individuals,
while the z-Rand score measures correctly identified pairs. Purity thus has a bias in
favor of more clusters. In the extreme case in which each individual is assigned to
its own cluster (in clustering A), the purity score is 100%. However, in this case the
number of correctly identified pairs is zero (each gang in our data set has at least two
members), and the mean and standard deviation of the hypergeometric distribution
are zero. Hence the z-Rand score is not well-defined. At the opposite extreme, where
we cluster all individuals into one cluster in clustering A, we have the maximum
number of correctly classified pairs, but the standard deviation of the hypergeometric
distribution is again zero, hence the z-Rand score is again not well-defined. The z-
Rand score thus automatically shows warning signs in these extreme cases. Slight
perturbations from these extremes will have very low z-Rand scores and hence will
also be rated poorly by this metric. Since we prescribe the number of clusters to be
31, this bias of the purity metric will not play an important role in this paper.

As a reference for comparing the results discussed in the next section, the total
possible number of pairs among the 748 individuals is 279,378. Of these pairs, 15,904
involve members of the same gang, and 263,474 pairs involve members of different

4Not to be confused with the matrix element W1,1.
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72 VAN GENNIP ET AL.

gangs (according to the ground truth). The z-Rand score for the clustering into true
gangs is 404.7023.

5. Performance of FI card data set. In Table 1 we show the purity and z-
Rand scores using S = A for different α. (For each α we give the average value over
10 k-means runs and the standard deviation.) Clearly α = 1 is a bad choice. This is
unsurprising given the sparsity of the social data. The clustering thus dramatically
improves when we add geographical data to the social data.

On the other end of the spectrum α = 0 gives a purity that is within the error
bars of the optimum value (at α = 0.4), indicating that a lot of the gang structure in
Hollenbeck is determined by geography. This is not unexpected, given the territorial
nature of these gangs. However, the z-Rand score can be significantly improved by
choosing a nonzero α and hence again we see that a mix of social and geographical
data is preferred.

In Appendix A we discuss the results we got from some other metrics, like ingroup
homogeneity and outgroup heterogeneity measures and Hausdorff distance between
the cluster centers. They show similar behavior as purity and the z-Rand score: All of
them are limited by the sparsity and noisiness of the available data, but they typically
show that it is preferable to include both social and geographical data. Social data
by itself usually performs badly.

Figure 2 shows a pie chart (made with code from [36]) of one run of the spectral
clustering algorithm, using S = A and α = 0.4. We see that some clusters are
quite homogeneous, especially the dark blue cluster located in Big Hazard’s territory.
Others are fragmented. We may interpret these results in light of previous work [9],
which suggests that gangs vary substantially in their degree of internal organization.
However, recall that in this paper we prescribe the number of clusters to be 31, so gang
members are forced to cluster in ways that may not represent true gang organization.

Table 1, the pie charts in Figure 2, and the other metrics discussed in Appendix A
paint a consistent picture: The social data in the FI card data set is too sparse to
stand on its own. Adding a little bit of geographic data, however, immensely improves
the results. Geographic data by itself does pretty well but can typically be improved
by adding some social data. However, even for the optimal values the clustering is
far from perfect. Therefore we will now consider different social matrices S with two
questions in mind: (1) Can we improve the performance of the social data by encoding
it differently? (2) Is it really the sparsity of the social data that is the problem, or can

Table 1

A list of the mean ± standard deviation over 10 k-means runs of the purity and z-Rand score,
using S = A. Cells with the optimal mean value are highlighted. Note, however, that other values
are often close to the optimum compared to the standard deviation.

α Purity z-Rand
0 0.5548 ± 0.0078 120.6910 ± 19.4133
0.1 0.5595 ± 0.0136 131.8397 ± 18.5551
0.2 0.5574 ± 0.0100 121.9785 ± 18.3149
0.3 0.5612 ± 0.0115 137.2643 ± 21.0990
0.4 0.5603 ± 0.0087 142.9746 ± 15.9186
0.5 0.5531 ± 0.0118 139.8599 ± 14.2651
0.6 0.5452 ± 0.0107 141.7835 ± 13.4852
0.7 0.5452 ± 0.0099 130.2264 ± 21.5967
0.8 0.5460 ± 0.0104 134.9519 ± 25.2803
0.9 0.5602 ± 0.0061 145.7576 ± 13.4988
1 0.2568 ± 0.0158 6.1518 ± 1.7494
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Fig. 2. Pie charts made with code from [36] for a spectral clustering run with S = A and
α = 0.4. The size of each pie represents the cluster size and each pie is centered at the centroid of
the average positions of the individuals in the cluster. The coloring indicates the gang makeup of the
cluster and agrees with the gang colors in Figure 1. The legend shows the 31 different colors which
are used, with the numbering of the gangs as in Figure 1. The axes are counted from an arbitrary
but fixed origin. For aesthetic reasons the unit on both axes is approximately 435.42 meters. The
connections between pie charts indicate intercluster social connections (i.e., nonzero elements of A).
See online article for color version of this figure.

the spectral clustering method not perform any better even if we would have more
social data? The first question will be studied in section 6, the second in section 7.

6. Different social matrices. For the results discussed above we have used the
social adjacency matrix A as the social matrix S. However, there are some interesting
observations to make if we consider different choices for S.

The first alternative we consider is the social environment matrix E, which is a
normalized measure of how many social contacts two individuals have in common. Its
entries range between 0 and 1, a high value indicating that i and j met a lot of the
same people (but, if Ei,j < 1, not necessarily each other) and a low value indicating
that i’s and j’s social neighborhoods are (almost) disjoint. It is computed as follows.

Let f i be the ith column of A. Then E has entries Ei,j =
∑748

k=1
fi
kf

j
k

‖fi‖‖fj‖ (where

‖f i‖2 =
∑748

k=1(f
i
k)

2). The procedure is reminiscent of the nonlocal means method [5]
in image analysis, in which pixel patches are compared, instead of single pixels.

From our simulations (not listed here) we have seen that we get very similar
results using either S = A or S = E, both in terms of the optimal values for our
metrics and whether these optima are achieved at the ends of the α-interval (i.e.,
α = 0 or α = 1) or in the interior (0 < α < 1). The simulations described in section 7
below showed that even for less sparse and more accurate data the results for S = A
and S = E are similar.

An interesting visual phenomenon happens when instead of using A or E, we
use a rank-one update of these matrices as the social matrix S. To be precise, we
set S = n(A + C), where C is the matrix with Ci,j = 1 for every entry and n−1 :=
maxi,j (A+C)i,j is a normalization factor such that the maximum entry in S is equal
to 1. (Again, the results are similar if we use E instead of A.)
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Fig. 3. Top: The second, third, and fourth eigenvectors of D−1W with S = A and α = 0.4.
The axes in the left picture have unit 106 feet (304.8 km) with respect to the same coordinate origin
as in Figure 2. The color coding covers different ranges: top left 0 (blue) to 1 (red), top middle
−0.103 (blue) to 0.091 (red), top right −0.082 (blue) to 0.072 (red). Bottom: The second, third, and
fourth eigenvectors of D−1W with S = n(A + C) and α = 0.4. The color coding covers different
ranges: top left −0.082 (blue) to 0.065 (red), top middle −0.091 (blue) to 0.048 (red), top right
−0.066 (blue) to 0.115 (red). See online article for color version of this figure.

Figure 3 shows the second, third, and fourth eigenvectors of D−1W (because of
the normalization the first eigenvector is constant, corresponding to eigenvalue 1) for
α = 0.4, both when S = A and when S = n(A + C) is used. We see that hotspots
have appeared after our rank-one update (and renormalization) of the social matrix
S. Similar hotspots result for other α ∈ (0, 1). An explanation for this behavior can
be found in the behavior of eigenvectors under rank-one matrix updates [6, 13]. Ap-
pendix C gives more details. Similar hotspots (and changes in the metrics; see below)
occur if other choices for S are made that turn the zero entries into nonzero entries,
e.g., Si,j = eAi,j , Si,j = eEi,j , or Si,j = e−θi,j , where θ is the spectral angle [15, 43].

An analysis of the metrics when S = n(A + C) shows that most metrics do
not change significantly. The exceptions to this are two of the metrics described in
Appendix A: The optimal value of the Hausdorff distance decreases to approximately
1350 meters, and the optimal value of the related minimal distance M does not
change much but is now attained for a wide range of nonzero α, not just for α = 1.
Most importantly, the averages of the purity stay the same and while the averages
of the z-Rand score decrease a bit, they do so within the error margins given by the
standard deviations. Hence, the appearance of hotspots is not indicative of a global
improvement in the clustering.
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We tested whether the hotspots can be used to find the gangs located at these
hotspots. For example, the hotspot seen in eigenvectors 2 (red) and 3 (blue) in the
bottom row of Figure 3 seems to correspond to Big Hazard in the left picture of
Figure 1. We reran the spectral clustering algorithm, this time requesting only two
clusters as output of the k-means algorithm and only using the second, third, or
fourth eigenvector as input. The clusters that are created in this way correspond to
“hotspots versus the rest,” but they do not necessarily correspond to “one gang vs. the
rest.” In the case of Big Hazard it does, but when only the second eigenvector is used
the individuals in the big blue hotspot get clustered together. This hotspot does not
correspond to a single gang. We hypothesize that there is an interesting underlying
sociological reason for this behavior: In the area of the blue hotspot, a housing project
where several gangs claimed turf, was recently reconstructed, displacing resident gang
members. Yet, even with these individuals being scattered across the city they remain
tethered to their social space, which remains in their established territories [1, 29].

We conclude that from the available FI card data, it is not possible to cluster the
individuals into communities that correspond to the different gangs with very high
accuracy, for a variety of interesting reasons. First, the social data is very sparse. The
majority of individuals are involved in only a couple of stops and most stops involve
only a couple of people. Also, some gangs are represented by only a few individuals
in the data sets: There are two gangs with only two members in the data set and
two gangs with only three members. Second, the social reality of Hollenbeck is such
that individuals and social contacts do not always adhere to gang boundaries, as the
hotspot example above shows.

That the social data is both sparse and noisy (compared to the gang ground
truth, which may be different from the social reality in Hollenbeck) can be seen
when we compare the connections in the FI card social adjacency matrix A with the
ground truth connections. (The ground truth connects all members belonging to the
same gang and has no connections between members of different gangs.) We then
see that5 only 2.66% of all the ground truth connections (intragang connections) are
present in A. On the other hand, 11.32% of the connections that are present in A are
false positives, i.e., they are not present in the ground truth (intergang connections).
Because missing data in A (contacts that were not observed) shows up as zeros in A,
it is not surprising that of all the zeros in the ground truth 99.98% are present in A
and only 5.56% of the zeros in A are false negatives.

Another indication of the sparsity is the fact that on average each individual in
the data we used is connected to only 1.2754 ± 1.8946 other people.6 The maximum
number of connections for an individual in the data is 23, but 315 of the 748 gang
members (42%) are not connected to any other individual.

Future studies can focus on the question of whether the false positives and neg-
atives in A are noise or are caused by social structures violating gang boundaries,
possibly by comparing the impure clusters with intergang rivalry and friendship net-
works [35, 31, 33]. Another possibility is that the false positives and negatives betray
a flaw in our assumption that individuals that are stopped together have a friendly
relationship. Because of the noncriminal nature of the stops, this seems a justified
assumption, but it is not unthinkable that some people that are stopped together have
a neutral or even antagonistic relationship.

5Not counting the diagonal, which always contains ones.
6This number is of course always nonnegative, even though the standard deviation is larger than

the mean.

D
ow

nl
oa

de
d 

09
/1

5/
14

 to
 1

28
.9

7.
24

4.
19

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

76 VAN GENNIP ET AL.

To rule out a third possibility for the lack of highly accurate clustering results,
namely, limitations of the spectral clustering method, we will now study how the
method performs on quasi-artificial data constructed from the ground truth.

7. Stability of metrics. To investigate the effect of having less sparse social
data we compute purity using S = GT (p, q). GT (p, q) is a matrix containing a fraction
p of the ground truth connections, a further fraction q of which is changed from true
to false positive to simulate noise. In a sense, p indicates how many connections are
observed and q determines how many of those are between members of different gangs.
The matrix GT (p, q) for p, q ∈ [0, 1] is constructed from the ground truth as follows.
Let GT (1, 0) be the gang ground truth matrix, i.e., it has entry (GT (1, 0))i,j = 1 if
and only if i and j are members of the same gang (including i = j). Next construct the
matrix GT (p, 0) by uniformly at random changing a fraction 1 − p of all the strictly
upper triangular ones in GT (1, 0) to zeros and symmetrizing the matrix. Finally,
make GT (p, q) by uniformly at random changing a fraction q of the strictly upper
triangular ones in GT (p, 0) to zeros and changing the same number (not fraction) of
randomly selected strictly upper triangular zeros to ones, and in the end symmetrizing
the matrix again. In other words, we start out with the ground truth matrix, keep a
fraction p of all connections, and then change a further fraction q from true positives
into false intergang connections.

In Figure 4 we show the average purity over 10 k-means runs using S = GT (p, q)
for different values of p, q, and α. To compare these results to the results we got using
the observed social data A from the FI card data set, we remember from section 6
that A contains only 2.66% of the true intragang connections which are present in
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Fig. 4. Plots of the purity using S = GT (p, q) for different values of q (the different plots) and
α (the different lines within each plot) for varying values of p. The plotted purity values per set of
parameter values are averages over 10 k-means runs, and the error bars are given by the standard
deviation over these runs. The dotted vertical lines indicate the values of p for which the number of
true positives in GT (p, q) is equal to the number of true positives in A. See online article for color
version of this figure.
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GT (1, 0). This roughly corresponds to p. On the other hand, the total percentage
of false positives (i.e., intergang connections) in A is 11.32%, roughly corresponding
to q. By increasing p and varying q in our synthetic data GT (p, q) we extend the
observed social links, adding increased amounts of the true gang affiliations with var-
ious levels of noise (missing intragang social connections and falsely present intergang
connections).

To investigate the effect of the police collecting more data at the same noise rate
we keep q fixed, allowing only the percentage of social links to vary. Low values of
α, e.g., α = 0 and α = 0.2, show again that a baseline level of purity (about 56%) is
obtained by the geographical information only and hence is unaffected by changing p.
As the noise level, q, is varied in the four plots in Figure 4, a general trend is clear:
larger values of 0 ≤ α < 1 correlate to higher purity values. This trend is enhanced
as the percentage of social links in the network increases. As expected, when only
social information is used, α = 1, the algorithm is more sensitive to variations in the
social structure. This sensitivity is most pronounced at low levels, when the total
percentage of social links is below 20. Even at low levels of noise, q = 5.5, using
only social information is highly sensitive. This suggests that α values strictly less
than one are more robust to noisy links in the network. The optimal choice of α = 8
here is more robust and consistently produces high purity values across the range of
percentages of ground truth. A possible explanation for this sensitivity at α = 1 and
the persistent dip in purity for this value of α and low values of p is that for fixed q
and increasing p the absolute (but not the relative) number of noisy entries increases.
At low total number of connections these noisy entries wreak havoc on the purity in
the absence of the mitigating geographical information. The bottom left of Figure 4
shows a noise level of q = 0.11321, which is set to match with what was obtained in
the observed data. The dotted vertical lines are plotted at values of p satisfying

p =
total number of true positives in A

total number of upper triangular ones in GT (1, 0)

1

1− q
=

423

15, 904

1

1− q
.

For this value of p the total number of true positives in GT (p, q) is 15, 904 ·p ·(1−q) =
423, which is equal to the total number of true positives in A.

It is clear from the pictures that collecting and using more data (increasing p),
even if it is noisy, has a much bigger impact on the purity than lowering the 11.32%
rate of false positives.

As noted in section 6, we ran the same simulations using a social environment
matrix like E as choice for the social matrix S, but built from GT (p, q) instead of
A. The results were very similar to those using S = GT (p, q), showing that for less
sparse data there does not appear to be much of a difference between using the social
adjacency matrix or the social environment matrix. We also ran simulations comput-
ing the z-Rand score instead of purity using S = GT (p, q). Again, the qualitative
behavior was similar to the results discussed above.

8. Conclusion and discussion. In this paper we have applied the method
of spectral clustering to an LAPD FI card data set concerning gang members in
the policing area of Hollenbeck. Based on stop locations and social contacts only,
we clustered all the individuals into groups, which we interpret as corresponding to
social communities. We showed that the geographical information leads to a baseline
clustering which is about 56% pure compared to the ground truth gang affiliations
provided by the LAPD. Adding social data can improve the results a lot if it is not
too sparse. The data which is currently available is very sparse and improves only a
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little on the baseline purity, but our simulations show that improving the social data
a little can lead to large improvements in the clustering.

An extra complicating factor, which needs external data to be dealt with, is
the very real possibility that the actual social communities in Hollenbeck are not
strictly separated along gang lines. Extra sociological information, such as friendship
or rivalry networks between gangs, can be used in conjunction with the clustering
method to investigate the question of how much of the social structures observed in
Hollenbeck are the results of gang membership.

Future studies will investigate the effect of using different methods, including the
multislice method of [25], the alternative spectral clustering method of [12, 11] based
on an underlying nonconservative dynamic process (as opposed to a conservative
random walk), and the nonlinear Ginzburg–Landau method of [3], which uses a few
known gang affiliations as training data. The question of how partially labeled data
helps with clustering in a semisupervised approach was explored in [2].

Appendix A. Other metrics. In some cases it is useful to look beyond purity
and the z-Rand score which we discussed in sections 4 and 5. Hence we also define
metrics that measure the gang homogeneity within clusters, the gang heterogeneity
between clusters, and the accuracy of the geographical placement of our clusters. To
give an impression of how our data performs for these metrics, we give the order of
magnitude of their typical values observed as averages over 10 k-means runs.

Recall from section 4 that w11 is the number of pairs which belong both to the
same cluster in our k-means clustering and to the same gang. Analogously w10, w01,
and w00 are the numbers of pairs which are in the same k-means cluster but different
gangs, different k-means clusters but the same gang, and different k-means clusters
and different gangs, respectively (e.g., [23, 37] and references therein).

Considering the error bars, the choice of α does not matter much for w11 ≈ 6,000
and w01 ≈ 9,800. As long as α < 1 it also does not matter much for w10 ≈ 10,000
and w00 ≈ 250,000.

We define ingroup homogeneity as the probability of choosing two individuals
belonging to the same gang if we first randomly pick a cluster (with equal proba-
bility) and then randomly choose two people from that cluster. We also define a
scaled ingroup homogeneity by taking the probability of choosing a cluster propor-
tional to the cluster size. Analogously we define the outgroup heterogeneity as the
probability of choosing two individuals belonging to different gangs if we first pick
two different clusters at random and then choose one individual from each cluster.
The scaled outgroup heterogeneity again weights the probability of picking a cluster
by its size.

We see a sharp drop in ingroup homogeneity when going from the unscaled (≈
0.58) to the scaled (≈ 0.40) version, indicating the presence of a lot of small clusters,
which are likely to be very homogeneous but have a small chance of being picked
out in the scaled version. This effect is not present for the outgroup heterogeneity
(≈ 0.96 for either the scaled or unscaled version) because the small cluster effect is
tiny compared to the overall heterogeneity.

We also compare the centroids of our clusters (the average of the positions of all
individuals in a cluster) in space to the centroids based on the true gang affiliations.
The Hausdorff distance is the maximum distance one has to travel to get from a cluster
centroid to its nearest gang centroid or vice versa. We define M as the average of
these distances, instead of the maximum. For comparison, the maximum distance
between two individuals in the data set is 10,637 meters.
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The Hausdorff distance (≈ 2200 meters) does not change much with α (but the
standard deviation is very large when α = 1). Surprisingly the average distance M
is minimal (≈ 450 meters) for α = 1, about 100 meters less compared to α < 1.
The large difference between M and the Hausdorff distance for any α indicates most
centroids are clustered close together, but there are some outliers.

The cluster distance (code from [8]) computes the ratio of the optimal transport
distance between the centroids of our clustering and the ground truth and a naive
transport distance which disallows the splitting up of mass. The underlying distance
between centroids is given by the optimal transport distance between clusters. This
distance ranges between 0 and 1, with low values indicating a significant overlap
between the centroids. The cluster distance (≈ 0.29) is significantly better if α <
1, showing a significant geographic overlap between the spectral clustering and the
clustering by gang.

Appendix B. Different number of clusters. In this section we briefly discuss
results obtained for values of k different from 31. Note that most of the metrics
discussed in section 4 and Appendix A are biased toward having either more or fewer
clusters. For example, as discussed in section 4, purity is biased toward more clusters.
Indeed, we computed the values of all the metrics for k ∈ {5, 25, 30, 35, 60} and noticed
that the biased metrics behave as a priori expected, based on their biases. This means
most of the metrics are bad choices for comparing results obtained for different values
of k. The exception to this is the z-Rand score, which does allow us to compare
clusterings at different values of k to the gang affiliation ground truth. We computed
the z-Rand scores for clusterings obtained for a range of different values of k, between
5 and 95. The results can be seen in Figure 5.

As can be seen from this figure, the z-Rand has a maximum around k = 55,
although most k values between about 25 and 65 give similar results, within the
range of one standard deviation. We see that, as measured by the z-Rand score, the
quality of the clustering is quite stable with respect to k.
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Fig. 5. The mean z-Rand score over 10 k-means runs, plotted against different values of k.
The different lines correspond to different values for α ∈ {0.2, 0.4, 0.6, 0.8}. The error bars indicate
the standard deviation. See online article for color version of this figure.
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Appendix C. Rank-one matrix updates. Here we give details explaining how
the eigenvectors of a symmetric matrix W change when we add a constant matrix.
Assume for simplicity7 that we want to know the eigenvalues of W + C, where C is
an N by N (N = 748) matrix whose entries Ci,j are all 1. Let Q be a matrix that
has as ith column the eigenvector vi of W with corresponding eigenvalue di. Let D
be the diagonal matrix containing these eigenvalues; then we have the decomposition
W = QDQT . Write b for the N by 1 vector with entries bi = 1 such that C = bbT . If
we write z := Q−1b, then

W + C = Q(D + zzT )QT = Q(XΛXT )QT ,

where X has the ith eigenvector of D + zzT as ith column and Λ is the diagonal
matrix with the corresponding eigenvalues λi. We are interested in QX , which is the
matrix containing the eigenvectors of W +C. According to [6] and [13, Lemma 2.1]8

we have for the ith column of X

X:,i = ci

(
z1

d1 − λi
, . . . ,

zN
dN − λi

)T

with normalization constant ci =

√∑N
j=1

z2
j

(dj−λi)2
.

Now

(QX)k,i = Qk,: ·X:,i = Qk,: · ci
(
Q−1

1,: · b/(d1 − λi), . . . , Q
−1
N,: · b/(dN − λi)

)T

= ci

N∑
l,m=1

Qk,lQ
−1
l,mbm

dl − λi
.

Since bm = 1 for all m we have (QX)k,i = ci
∑N

m=1(QFQ−1)k,m, where F is the
diagonal matrix with entries Fll =

1
dl−λi

. Since Q has the eigenvectors vl as columns

and Q−1 is its transpose we conclude

(QX)k,i = ci

N∑
m=1

[
(v1, . . . , vN )

(
1

d1 − λi
v1, . . . ,

1

dN − λi
vN

)T
]
k,m

= ci

N∑
m,l=1

(vl)k
1

dl − λi
(vl)m.

Finally, since the eigenvectors vl are normalized we find that the kth component of
the ith new eigenvector is given by

(QX)k,i = ci

N∑
l=1

(vl)k
dl − λi

.

7Note that what we are doing in our simulations is slightly more complicated: We use αn(S +

C)+ (1−α)e−d2i,j/σ
2

, so in addition to adding a constant matrix S is multiplied by a normalization
factor n = (maxi,j (Si,j + 1))−1.

8In order to use this result we need to assume that all the eigenvalues di are simple, i.e., W should
have different eigenvalues. This might not be a completely true assumption in our case, although it
typically holds for most eigenvalues unless W has a well-separated block diagonal structure.
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Fig. 6. Left: The first 100 eigenvalues of D−1W with S = A and α = 0.4. Right: The first
100 eigenvalues of D−1W with S = n(A + C) and α = 0.4. See online article for color version of
this figure.

Also, according to [6, Theorem 1], the eigenvalues λi are given by

λi = di +N2μi

for some μi ∈ [0, 1] which satisfy
∑N

i=1 μi = 1.
If we apply this idea to our geosocial eigenvectors, we see in Figure 6 that most of

the eigenvalues of W and W +C7are close to zero and hence close to each other. Only
among the first couple dozen are there large differences. This means that most of the
new eigenvectors are more or less equally weighted sums of all the old eigenvectors
belonging to the small eigenvalues and hence lose most structure. It is therefore
up to the relatively few remaining eigenvectors (those corresponding to the larger
eigenvalues) to pick up all the relevant structure. This might be an explanation of
why hotspots appear.
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