Downloaded from https://www.pnas.org by UC Los Angeles on January 7, 2026 from |P address 131.179.220.1.

p N AS PSYCHOLOGICAL AND COGNITIVE SCIENCES

Check for
updates

Network structure shapes consensus dynamics through

individual decisions

J. Hunter Priniski®' (2}, Bryce Linford®, Anna Hirschmann®, Sai Krishna Venumuddala®(®), Fred Morstatter, Nancy Rodriguez®,

P. Jeffrey Brantingham®(), and Hongjing Lu®®

Affiliations are included on p. 8.

Edited by Bernice Pescosolido, Indiana University, Bloomington, IN; received July 28, 2025; accepted November 13, 2025

How do shared narratives emerge in decentralized online networks? Prior research
using simplified group coordination tasks (e.g., face-naming) shows network structure
shapes group consensus, but the underlying cognitive mechanisms remain unclear.
Here, we examine how network structure influences the emergence and semantic
content of shared narrative beliefs in experimental online social networks, using natural
language processing measures and agent-based modeling. Media content with complex
causal structure attenuates network structure effects by encouraging longer exploration
of background knowledge. Yet network structure still shapes the narrative content
communicated. An embedding-based narrative alignment measure shows that fully
connected groups orient their interactions more toward communicating causes of an
event, whereas locally connected networks emphasize the event’s effects. A group’s
network structure also influences representational and language change in personal
narratives: participants in fully connected networks showed the largest increase in
causal language in personal narratives written after interaction, which also orient more
around the narrative’s causal events.

online networks | narratives | group dynamics | digital media | NLP

Digital media and online networks have transformed how narratives are structured and
circulated. Individual and collective sense-making has been transformed by the seemingly
ubiquitous production and sharing of hashtags, short-form text, images, and videos
(1, 2), with real-world impacts on people’s identities (3, 4), beliefs about religion (5) and
science (6), and collective organizing (2, 7-9). Yet it is unclear how individual decision-
making interacts with a group’s network structure to shape the dynamics and content of
collective narratives. Real-world narrative and decision dynamics are difficult to model
(10-12) and social media communication is not amenable to experimental control. Prior
social network experiments have demonstrated how network structures shape collective
outcomes through naming tasks (13—15). However, the interaction materials in these
experiments were designed to study coordination driven by functional communication
needs, rather than to examine how individuals’ causal beliefs and personal narratives
evolve as networked interactions unfold.

To address this gap, we collected a rich set of narrative interaction data through an
online experimental platform spanning multiple network sizes, two distinct network
structures, and two types of media content (Fig. 1). Our experimental environment
extends long-standing designs using group coordination tasks to measure the effects of
varying social network connectivity on convention formation and adoption of shared
beliefs (16-21). Participants first read narrative materials detailing a real-world disaster
with an inherent causal structure, termed the focal narrative, and were asked to write
tweet-like statements about the disaster, termed personal narratives. Subsequently,
they were assigned to one of two networked interaction environments. For one
group, participants interacted in a Hashtag Game by aiming to generate hashtags that
matched those generated by network neighbors and concisely characterized the disaster
narrative. For the other group, participants interacted in the Name Game, replicating
Centola and Baronchelli’s (2015) face-naming task, grounded in the formal theory of
convention formation and illustrating how group-level language conventions emerge
from individuals’ functional need to coordinate responses with their network neighbors
(13, 22, 23). Both groups were offered identical rewards, incentivizing individuals
to match the responses of their network neighbors. The Name Game serves as an
effective comparison for narrative coordination in the Hashtag Game because naming
conventions, unlike narrative-specific hashtags, are functionally interchangeable and do
not require background knowledge about causal event structure.
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This study tests how interactions over media with inherent
causal structure impact individual decisions and group dynamics,
and how network structure impacts the semantic content of
narrative interactions. As shown in Fig. 14, we hypothesize
that network structure and the causal model evoked by a
narrative’s media content jointly influence consensus dynamics
through the decisions individuals make to coordinate with
network neighbors. Individuals update beliefs and language to
coordinate with their social circles by integrating information
gathered from social context with their own prior knowledge
about the event (24, 25). This real-time integration process
impacts both group-level consensus and shifts individual causal
understanding about the event over time, even though in-
dividuals are only rewarded for successful local coordination
with network neighbors without awareness of broader group
consensus. This hypothesized framework implies observable
effects at both the individual and collective levels. Hence,
our analysis examines how the distribution of individual-level
decisions shifts over time, alongside the dynamics of consensus
formation at the group level. Findings reveal that media content
with inherent causal structure encourages individuals to explore
their prior knowledge for a longer period of time during
networked interaction rather than quickly mirror neighbors’
responses in social context, which attenuates the effect of
fully connected network structures on the adoption of shared
beliefs.

To better explain the intertwined, bidirectional relationship
between individual decisions and how information spreads
through social context, we developed a computational network
model composed of Context Aware Agents (CAA). The CAA
model simulates how individual agents integrate prior knowledge
about causal information with social information to coordinate
locally. By comparing human and model performance across
experimental conditions, we evaluate the model’s ability to
capture both the dynamics of human consensus formation
and decision strategy change at the individual level. We also
compared CAA model simulations with a computational model
developed for the Name Game, in which language outputs
are functionally interchangeable (26), to highlight the role
prior knowledge about narrative information plays in effective
coordination. Simulations from the CAA model corroborate
experimental results demonstrating that, when agents explore
prior knowledge for longer, consensus is more difficult to achieve
in fully connected networks.

To examine how the causal content of language data fluctuated
during and after networked interactions, we applied two custom-
built Natural Language Processing (NLP) pipelines to analyze
the semantic content in the networked communications and
personal narratives of participants. As described in Fig. 14,
network structure influences the array of information individuals
encounter in social interaction, which in turn affects their
narrative frame; the components of the causal model with
which a neighborhood aligns their responses. We developed an
embedding-based narrative alignment measure that map hashtags
to subcomponents of the narrative’s text, finding that more
complete mixing of interactions in fully connected networks
orients individual responses toward the causes of the event,
while networks with separated neighborhoods reward more
divergent local frames with responses clustered around various
effects of the event. We also applied a causal language NLP
measure (27) to participant’s tweet-like statements to assess
how networked interactions influenced the content of personal
narratives, finding that participants in fully connected hashtag-
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matching networks most significantly increased their use of causal
language surrounding the disaster’s causes.

1. Results

Fig. 1B provides an overview of the experiment. We col-
lected 41,600 interactions from 1,040 participants across 26
experimental runs. A total of 989 subjects provided complete
interaction data. Participants read a passage describing the 2011
Fukushima nuclear disaster and its effects on local communities
and the environment (S Appendix, Table S1). They then
composed a tweet-like (preinteraction) personal narrative about
the event. Participants were assigned to a network interaction
environment to complete either a Hashtag Game, which involved
generating hashtags about the disaster narrative during networked
interactions, or a Name Game (13) to generate a name for an
image of a face (see details in S/ Appendix, section S2). We
also manipulated network structures, including homogeneously
mixed (fully connected, NV — 1 neighbors) and spatially embedded
(locally connected, 4 nearest neighbors) networks. Participants
were financially incentivized to coordinate responses with net-
work neighbors. Following network interactions, all participants
composed another tweet-like (postinteraction) personal narrative.

A Prior

Knowledge

| Fig. 2B Fig. 3D
§1B = |

§1.D
Individual Personal
> Decision Narrative
Strategy Change

Media
Content

Figs. 3B
) §1.B+1C Fig. 2A
§1A

Information in
————> Social
Context

Network
Structure

Group

 ——
Consensus

B Block 1 Block 2 Block 3
Interaction Post-i

i}:ﬁ L o 0.0
: B \,{:} -

B0

Name Game

Participants: 1,040
Interactions: 41,600
Groups: 26

Sizes: 20, 50, 100

Hashtag Game

Fig. 1. Panel (A): Theoretical diagram illustrating the relationships between
hypothesized variables. Orange boxes indicate experimental manipulations,
tan boxes represent informational inputs influencing decision-making, and
teal boxes denote behavioral outcomes analyzed in the results. White boxes
show where each set of results or relationships is discussed in the main
text, with section numbers indicating where results for each core component
are reported. Panel (B): Experiment procedure and networked interaction
tasks. The experimental design follows three blocks. A single node (in yellow)
highlights one participant’s tasks throughout. In the preinteraction block,
all participants read the Fukushima nuclear disaster narrative encoding the
graphical causal model (not shown to participants), and wrote a tweet-like
personal narrative. In the networked interaction block, group communication
varied by network structure (homogeneously mixed vs. spatially embedded)
and interaction content (narrative via hashtag matching vs. a Name Game
control from Centola and Baronchelli, 2015). Participants interacted with
network neighbors for 40 trials, receiving one point per matching response;
the highest scorer received a financial reward. In the postinteraction block,
participants again wrote a personal narrative. See S/ Appendix, sections S1
and S2 for more information about the experiment environment.
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1.1. Narrative Coordination Attenuates the Effect of Fully
Connected Network Structures on Consensus. We examine the
proportion of a group providing the dominant or normative
response on each trial as a measure of group-level response
convergence (see S/ Appendix, sections S4 and S5 for details).
We fit a Beta-distributed GLM to predict the proportion of
a group producing a dominant response as a function of trial
number, neighborhood structure, content of network interaction,
and interactions between these predictors, while controlling for
network size. The data were well fit by a Beta GLM, given that
the analysis focused on a dominant response and the response
proportions lie between 0 and 1. As shown in Fig. 24, shared
responses emerged reliably over time in homogeneously mixed
face-naming networks (f73,; = 0.09, 95% CI [0.09, 0.10]),
doing so more slowly in homogeneously mixed hashtag-matching

networks (B7yia:Hashiag = —0.04, 95% CI [—0.05, —0.03)),
and substantially less so in spatially embedded face-naming
networks (B7vial:Spariat = —0.08, 95% CI [—0.09, —0.07)).

These findings are consistent with previous research analyzing
group communication over face naming (13). In addition, we
found a significant three-way interaction effect between network
structure, media content, and the number of trials. The rate
at which shared responses emerge across network structures is
shaped by the media content (87;;4: Spatial:Hashtag = 0.05, 95%
CI [0.04, 0.06]). This finding shows that participants interacting
over media content with inherent causal relations can reduce
the effect of a fully connected network structure on group-
level consensus. Specifically, homogeneously mixed networks
reached consensus faster than spatially embedded networks for
both hashtag-matching and face-naming, but there was less of
a divergence in shared responses across network structures in
the hashtag-matching condition. We corroborate this finding in
SI Appendix, section S6 by predicting shifts in the entropy of each
group’s full response distribution, which quantifies shifts in the
tail of the response distribution beyond the normative response.
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1.2. Participants Explore New Responses Longer When Coor-
dinating over Media with Causal Structure. Responses are less
interchangeable when they must cohere with a narrative’s causal
structure (e.g., hashtags) as opposed to when a shared response is
purely conventional, as in the case of assigning arbitrary category
names (28) or labels for a face image (13, 22, 23). Hence,
we hypothesize that coordinating labels for media content with
causal structure increases participants’ exploration of possible
responses, thereby increasing the variability of responses in social
context and slowing the rate of group coordination, as has been
suggested by simulation results of networked group behavior
(16). To test this hypothesis in human-based groups, we analyzed
how individual-level decision strategies changed over time as a
function of network structure and media content. We consider
four decision strategies that a participant could adopt while
interacting with network neighbors. They could explore the
response space by sampling a “new” response that neither a
partner nor they themselves had produced on a previous trial.
They could copy their partner’s response from the last trial, or
repeat their own previous response (“repeat partner” and “repeat
self,” respectively). In cases where there is agreement on a previous
trial (i.e., repeat partner and repeat self are the same response),
we code this as repeat self, as self-consistency is rewarded in these
trials. They could also resample a response they remember from
earlier interactions (“earlier context”), which could have been
self-generated or received in a previous networked interaction
trial.

We fit a categorical Bayesian model to predict indi-
vidual decisions over time across experimental conditions.
On average, participants were much less likely to repeat responses
from social context in the Hashtag Game than in Name
Game (ﬁHmlymg:RS = —1.36, 95% CI [—1.49, —1.26}; ﬁHﬂ:}/mg:
rp = —1.04, 95% CI [—1.18, —0.90]); ﬁHathg:EC = —0.39,
95% CI [—0.53, —0.24]). In addition, the onset of different
decisions varies across experimental conditions. Fig. 2B shows
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Fig. 2. Panel (A): Onset of behavioral coherence during networked interaction. Plots show the proportion of each group adopting a dominant response over
time, organized by group size (columns) and interaction media content (rows). Each line represents one experimental run, and each point shows the proportion
of participants reporting the most common response (which may vary by trial within a run). As shown in the Top plots, while groups adopt shared hashtags,
they do so more slowly than in the face-naming condition. Changes in response distribution entropy from these runs are shown in S/ Appendlix, Fig. S2. Panel (B):
Dynamics of individual decisions during networked interaction. Plots show the proportion of each group using one of four decision strategies (sampling new
responses, repeating a partner’s last response, repeating one’s own previous response, or resampling from earlier context) over 40 trials, by network structure
(spatially embedded vs. homogeneously mixed) and media content (hashtag-matching vs. face-naming). Cases where both the participant and their partner
give the same response (i.e., rewarded responses) are coded as repeat self. Proportions reflect averages across runs for each size, structure, and content
condition. As shown in the Top panels, hashtag-matching groups sample new responses (black lines) for longer, while face-naming groups (Bottom panels)

adopt a self-consistent strategy (orange lines) more quickly.
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the number of participants exploring new responses (black)
and exploiting a response through repeating a past response
(orange). Each panel represents a network experiment condition.
The number of participants sampling a new hashtag response
decreased gradually in the Hashtag Game, but fell immediately
for new names in the Name Game.

We hypothesize that prior knowledge about media content
and the lack of interchangeability of responses plays a key role
in the prolonged exploration and slower convergence seen in
the Hashtag Game. As shown in 87 Appendix, Fig. S6, hashtags
generated during network interactions often align with one of
the eight discrete causal events described by the narrative. For
example, individuals who wrote #Earthquake, #Tsunami, and
#Setsuden on a given trial coordinated with their neighbors
about 33% of the time. However, the most successful names
were Emily (coordination on 65% of trials it was generated),
Maddie (60%), and Taylor (60%). Their relative fitness is
much higher than the highest coordinating hashtag (#Nuclear),
which resulted in coordination around 40% of the time it was
generated. Indeed, ten names have higher average coordination
rates than the top hashtag. Participants are more willing to adopt
names received in social context than hashtags, as there is less
background knowledge shaping which responses are viable. Many
of the names appear functionally interchangeable in a way that
hashtags are not. For example, Mary and Emily are equally viable
responses given the lack of causal content communicated by the
face stimuli, whereas #Setsuden and #Tsunami isolate different
causal relations that are not exchangeable. Therefore, face naming
groups quickly reach consensus because responses encountered
in social context are readily adopted and do not rely on any
underlying causal understanding of media content, in contrast to
hashtags about the nuclear disaster.

Interestingly, network structure impacts decision dynamics
in the Name Game, but not in the Hashtag Game. As shown
in the orange lines on the Bostom panels of Fig. 2B, spatial
(locally connected) face-naming networks show an asymptotic
rise in the number of repeated responses, while homogeneous
(fully connected) face-naming networks show a linear rise, with
both groups reaching about 80% of participants exploiting a
response by the end of the experiment (compared to around
50% in hashtag networks). Repeated interactions in smaller
neighborhoods can more directly shape individual learning when
the interaction media does not require complex causal and
situational understanding, as in the case for the spatial face-
naming networks. (We discuss how these factors impact the
onset of local coordination in S/ Appendix, section S7 and
its implications for what constitutes shared meaning at the
group level in SI Appendix, section S2.) We observed that
network structures do not appear to impact dynamics of the
decision strategies employed by individuals in the Hashtag Game.
However, these structures could play a role in shaping the content
communicated within networked interactions, which we will
examine in the next section.

1.3. Network Structure Shifts Narrative Alignment of Hashtags
Generated During Interactions. While individual decisions and
network structure interact to shape the distribution of responses
across a group, these factors may shape the semantic content
of responses as well. Numerous studies have shown that causal
relations are central to narrative representation (29-32). To com-
pute how hashtag responses aligned with the causal model evoked
by the disaster narrative, we developed a narrative alignment
measure that leverages sentence-level semantic embeddings to
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project hashtags onto a lower-dimensional narrative alignment
vector. The narrative alignment vector encodes the similarity of
a hashtag to different components of the narrative, thus serving
as a measure of an individual’s narrative credence at a given point
in time.

As described in Fig. 34, each hashtag’s narrative alignment
vector is computed by 1) breaking the Fukushima disaster
narrative text into causal events based on the underlying causal
model; 2) computing embeddings for each hashtag response
and for the sentences of each event; 3) computing cosine
similarity between each hashtag embedding and each narrative
event embedding, yielding a vector of cosine similarities; and 4)
computing alignment scores by normalizing the similarity vector
with a softmax function such that the values sum to one.

Fig. 3B shows that participants in both network structures
generated hashtags that aligned more with the narrative topic
sentence and causes of the disaster than the effects of the disaster.
Importantly, participants in homogeneously mixed networks
produced hashtags with significantly higher alignment on both
the general topic descriptions of the disaster (#(537) = 2.68,
P < 0.01) and causes of the disaster (#(560) = 3.32, P < 0.001)
compared to those in spatially embedded networks. In spatially
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Fig. 3. Panel (A): The Narrative Alignment Measure aligns hashtags with
the causal structure of the disaster narrative. Cosine similarity is computed
between each hashtag and the text representing each event in the narrative.
The resulting similarity values (one per event) are normalized using a softmax
function scaled by tau, producing a vector that sums to one and proxies a
narrative credence value. Panel (B): Mean narrative alignment score reflects
the average alignment vector for each participant (see S/ Appendix for details).
While participants in both network structures generated hashtags aligned
with topic sentences and causes of the disaster, homogeneously mixed
groups showed greater alignment on these entities. In contrast, spatially
embedded groups showed more alignment with the disaster’s effects. Panel
(C): The causal claims pipeline identifies documents with explicit causal
language in personal narratives. If atransformer model detects a causal claim,
a causal topic is identified via semantic clustering. Causal language shift is
defined as the difference in causal claims before and after interaction. Panel
(D): Shifts in causal claims following networked interaction. Mean difference
scores represent the change in number of causal claims per participant under
each interaction condition. Both content conditions shared the same pre-and
postinteraction phases (Fig. 1). Participants in homogeneously mixed hashtag
networks showed the largest increase in causal language, with most added
claims focusing on causes of the disaster.

pnas.org


https://www.pnas.org/lookup/doi/10.1073/pnas.2520483123#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2520483123#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2520483123#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2520483123#supplementary-materials

Downloaded from https://www.pnas.org by UC Los Angeles on January 7, 2026 from |P address 131.179.220.1.

embedded networks, participants generated hashtags that were
significantly more aligned with first-order effects described in the
narrative (i.e., those directly resulting from the disaster event)
(#(565) = —4.42, P < 0.001) as well as second-order effects
(i.e., subsequent effects indirectly resulting from the disaster
event) (£(498) = —5.34, P < 0.001). There was no significant
difference across network structures in hashtag alignment to
the damage to the nuclear power plant event (¢(568) = 0.99,
P =0.324).

The asymmetry in narrative alignment of generated hashtags
across network structures is likely due to divergences in which
narrative information is rewarded and communicated via partic-
ipants’ social interactions. Social rewards can steer individuals
away from background priors during networked interactions
(S Appendix, Fig. S5), resulting in smaller neighborhoods
coordinating around lower-prior hashtag responses (i.e., shifting
away from topic and disaster causes toward effects of the disaster).
Participants in homogeneously mixed networks are exposed to
responses from a wider array of participants than those in spatially
embedded networks (/V —1 participants in homogeneously mixed
networks compared to 4 neighbors in all spatially embedded
networks). Indeed, homogeneously mixed participants are em-
bedded in social contexts with higher entropy (i.e., variation)
among partners’ hashtag responses (r = 3.35,P < 0.001)
than participants in spatially embedded networks. Therefore,
participants in homogeneously connected networks are more
likely to rely on hashtag responses representative of back-
ground priors and causes of the disaster event. In contrast,
the smaller social neighborhoods and increased repetition of
pairwise interactions in spatially embedded networks can steer
people away from background knowledge. The lack of across-
network connections in spatially embedded networks can further
lead individuals to become entrenched in localized narrative
frames (i.e., those resulting from coordination rewards rather
than background knowledge, which is assumed to be constant
across participants). As a result, participants in separable social
neighborhoods in spatially embedded networks learn to align
hashtags with different features of the focal narrative, including
different effects due to increased social reinforcement in smaller
neighborhoods. Priors win out quickly in homogeneously mixed
networks, where there is more mixing of hashtags (33). To
illustrate the semantic content of shared responses emerging
across conditions, ST Appendix, Figs. S3 and S4 present color
maps of full groups’ responses. These figures show how semantic
coherence is achieved as agents mix their responses across smaller

(N = 20) and larger (N = 50) groups.

1.4. Fully Connected Networks Shift Causal Language of Per-
sonal Narratives Toward Causes in Focal Narrative. Before and
after network interaction, participants wrote tweet-like personal
narratives about the Fukushima nuclear disaster. We used a
causal language analysis pipeline (27) to analyze the narratives
generated by participants. The causal language analysis pipeline
identifies causal tuples in each document. A document is labeled
as having a causal relation if there is a span of tokens belonging
to a cause and a span of tokens belonging to an effect within
the document. The algorithm then finds cause and effect topics
without supervision by clustering the cause-and-effect spans
based on their semantic topics (see SI Appendix, section S11
for details on the pipeline). The pipeline automatically identified
each of the causal events in the disaster narrative in addition to
semantically related topics that were not explicitly described in
the narrative text (S/ Appendix, Table S5). We examine how these

PNAS 2026 Vol. 123 No.2 2520483123

topic distributions change in personal narratives composed in
the pre- to postinteraction phases of our experimental networked
environment.

We conducted an independent-sample 7 test on the difference
scores (i.e., number of causal claims generated after interaction
minus number of causal claims generated before interaction
for each participant) across both levels of network structure
and media content. As shown in Fig. 3D, hashtag-matching,
homogeneously mixed networks yielded a significant increase
of causal language after networked interactions (#(261) =
4.01,7 < 0.001). Neither hashtag-spatial (¢(257) = 0.95,
P = 0.345), nor the face-naming networks had a significant shift
(homogeneous difference values, #(201) = 1.16, P = 0.249);
spatial: #(203) = 1.40,P = 0.164). SI Appendix, Fig. S7
shows the distribution of difference scores in each of the
network structure and interaction content conditions. To ensure
that this effect is robust we additionally fit a Gaussian hurdle
model to the distribution of difference scores as a function of
network interactions conditions as linear predictors (structure
and interaction content) (S Appendix, section S11).

We now narrow our analysis of causal language shifts to
the 67% of participants who expressed at least one causal
claim identified by the pipeline. We analyzed which specific
causal relationships increased and decreased in personal narratives
after networked interactions. We computed the subject-level
difference scores (postinteraction count minus preinteraction
count) for each causal relation for each participant. We then
performed one-sample 7 tests coupled with a multiple comparison
correction procedure using a False Discovery Rate of 0.05 (S/
Appendix, Tables S6-S9). For both of the hashtag-matching
groups, causal language change centered around the three causal
events (“Earthquake,” “T'sunami,” and “Nuclear Disaster”) de-
scribing the generative causal chain in the narrative. Furthermore,
homogeneously mixed hashtag-matching interactions resulted in
significantly more participants in the group eliciting the full
causal chain in their personal narratives, that is Earthquake
causes Tsunami (P = 0.011), and Tsunami causes Nuclear
Disaster (P = 0.018). The spatially embedded hashtag-matching
networks showed a smaller shift toward the initial generative
causal chain (P = 0.048 for both causal relations). This shift
in causal language is concordant with the narrative alignment
results for hashtags generated during the networked interaction
phase. While both groups were more prone to generate hashtags
that signaled the causes of the disaster, homogeneously mixed
groups were more likely than spatial groups to generate hashtags
that aligned with the causal events. The results differ for the
face-naming groups, where the causal chain was not significantly
increased in either network condition. These findings suggest that
network interactions that produce wider exposure to the causal
and semantic content via only hashtag responses have a sub-
stantial impact on the causal content referenced in participants’
personal narratives of the event. This network interaction effect
on causal language is less pronounced in spatially embedded
networks, and nearly absent when groups coordinate around
causally irrelevant materials (i.e., naming a face rather than
writing hashtags for the narrative).

2. Simulating Consensus Dynamics with
Networks of Context Aware Agents (CAA)

To model how network structure and decision strategies jointly
influence the onset of consensus, we developed a network model
of Context Aware Agents (CAA) to simulate the real-time
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updating of individuals’ decision strategies for integrating their
prior knowledge with information gathered from social context
during network interactions over the course of the experiment.
Based on a parameter a, agents sample responses from prior
distributions (background knowledge about possible responses
in face or hashtag conditions, see ST Appendix, Fig. S5) or from
social context (memory trace of interaction history). Background
knowledge about media content becomes progressively less
important and reliance on social context increases as the number
of trials increases. See SI Appendix, section S12 for details on the
models.

We compared the CAA model performance with simulations
from the computational model implemented for the Name Game
(13, 26). As shown in Fig. 44, the comparison model randomly
assigns one individual from each pair to be the speaker and the
other to be the hearer. If the speaker’s response is already in
the hearer’s vocabulary, each of their vocabularies is updated
to contain only that response, otherwise, the speaker’s response
is added to the hearer’s vocabulary. The next response of each
individual is a selection from their own updated vocabulary.
In comparison to the CAA model, the comparison model
does not take prior knowledge into account, and thus does
not weigh between social context and background informa-
tion.

Fig. 4B shows the entropy results for all four experimental
conditions, where we compared experimental results (open
points) with model predictions (triangular points). As shown in
the Left subplots of Fig. 4B, we find that the comparison model
without considering prior background knowledge consistently
overestimates the rate of entropy decrease and does not change
for either form of interaction media. These results stem from the
lack of exploration of background knowledge in this model; it
only takes advantage of an agent’s social context and is a greedier
social learning algorithm than the CAA model. The CAA model
provides a better fit in all four experimental conditions as shown
in the Right subplots of Fig. 4B. We also find that the CAA model
is robust to parameter variation. For example, the performance
remains highly similar whether all agents use the same parameter
value of a or individual agents draw values from a distribution

(81 Appendix, section S12).
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Fig. 4. Overview of computational models and simulation results. Panel (A)
describes the computational model developed for the Name Game (13, 26)
and the Context Aware Agent (CAA) model developed in the present paper.
The colored squares indicate possible responses in each player's vocabulary
for the interaction tasks (e.g., names in the face-naming task, and hashtags
in the hashtag-matching task). The illustrations show how players (P1 and
P2) update their vocabulary through the interaction task. Panel (B) shows the
simulation results of normalized entropy across runs for each content and
structure condition against humans from both computational models. « val-
ues in the CAA panels measure how much agents sample background priors
when generating responses, which attenuates the effect of network structure
on group outcomes (the degree of separation between red and blue lines at
trial = 40).

6 of 8 https://doi.org/10.1073/pnas.2520483123

3. Discussion

Demonstrating how individual decisions interact with neighbor-
hood structure to shape the flow of narrative information in social
networks is critical for understanding how decentralized groups
can reach consensus over complex information. We replicated
long-standing empirical findings that information can readily
spread across homogeneously mixed (fully connected) networks,
which facilitates shared language and beliefs about narrative
materials. However, when coordinating labels based on narrative
stimuli with inherent causal structure, participants explore possi-
ble responses for longer, leading to increased uncertainty in social
context and a slower onset of shared beliefs. Well-demonstrated
network effects on collective beliefs are therefore attenuated
by the causal understanding involved in individual decision-
making. Network structure still impacts the content of narrative
interactions, however. Complete mixing during interactions
in fully connected networks results in individuals orienting
their responses toward the causes of an event. Local mixing
in spatially embedded networks reinforces individual responses
toward disparate narrative effects. Furthermore, groups in the
homogeneously mixed hashtag-matching condition significantly
increased the amount of causal relations in personal narratives
after networked interactions, explicitly mentioning the causes
of the disaster event. This shift in personal narratives suggests
that exposure to causal information extracted from narrative
interactions during network interaction (here via hashtags) has
the potential to direct attention to specific features in long-form
narratives and shift language used to describe those narratives.

These findings suggest that interventions to foster narrative
consensus should look beyond network rewiring. Future experi-
ments might look at the interaction between network structure
and the causal framing of a narrative’s situation to manipulate
the communicative context of a networked group: shifting how
individuals frame a narrative prior to networked communications
in order to establish the group’s narrative frame from which
communication and social learning is carried out. Experiments
on individuals show that metaphors can frame complex social
phenomena and set narrative frames that impact individual’s
beliefs and policy decision-making (34). Network extensions of
these framing experiments can test how certain frames can more
effectively impact group consensus dynamics. A limitation of our
study is that the NLP models only focus on how language data
aligns with the causal structure of the narrative stimuli. Network
experiments on narrative frames will require NLP advances to
better probe alignment with a narrative’s complete situation
model, which includes elements of agency, time, and space in
addition to causation (29, 31, 32). Future NLP models should
parse a wider array of semantic relations to model shifts in
situation models. Such models can more precisely measure how
narrative frames vary across a group and change over the course
of interactions with network neighbors.

In this experiment, coordinating hashtags about a focal
narrative serves as a proxy for how individuals use hashtags to
coreference documents and enable broader narrative collabora-
tion across real-world online social networks (9, 35, 36). Focal
hashtags are key for mapping personal narratives to a shared
discussion and allow for collective organizing and discussion
through hashtagging personal narratives. While direct incentives
for using an effective focal hashtag on social networks in the
wild do not exist, our experiment platform approximates the
utility of gaining traction (i.e., virality) through coordination
rewards. Future experiments will use narrative materials that
probe political reasoning and more emotional valences, including
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power, to test how different narratives can extend the experiment
platform to study narrative dynamics akin to those in online
networks found in the wild.

4. Materials and Methods

This section includes material first presented in JHP's doctoral dissertation (37),
and in conference articles presented at the Cognitive Science Society (38, 39).

4.1. Preregistration. We preregistered the experimental design, key hypothe-
ses, and statistical analysis framework on the Open Science Frameworkat https://
osf.io/598dt?mode=4&revisionld=&view_only=. All code and anonymized data
for the presented results and software for replicating the experiments can be
found at the following GitHub repository https://github.com/jpriniski/NetCom.
4.1.1. Participants. We sampled a total of N = 1,040 participants from
the Prolific and UCLA SONA subject pools, and placed them into one of 26
experimental runs. Atotal of 989 subjects provided complete data. Experimental
runs vary according to three factors: the size of a network (N = 20, 50, 100),
its connectivity structure (homogeneously mixed/fully connected; spatially
embedded/ring-like), and the content of interaction (hashtag; face-name) (total
nodes N = 1,040). We collected a total of twelve experimental runs for face
interaction (three runs for each network structure of sizes N = 20and N = 50),
and fourteen experimental runs for hashtag interaction (three runs for each
network structure of sizes N = 20 and N = 50, and a single run of each
network structure for N = 100). Participants N = 20 and N = 50 con-
ditions were sampled using Prolific. For the N = 100 condition, we recruited
undergraduates in the Department of Psychology at UCLA through SONA subject
pools. We posted initial recruitment surveys a week prior to each run in SONA
and a few hours prior to each run in Prolific. Participants who received the
most points at the end of the experiment received an additional $10 bonus. All
experiments and analyses were approved by the UCLA institutional review board
undersubmission IRB-22-1184. All participants provided informed consent prior
to participation.

4.1.2. Materials. Across all network conditions, participants first read a four-
paragraph narrative description of the 2011 Fukushima nuclear disaster prior to
interaction ina network. The narrative explains how a large earthquake triggered
a tsunami that caused damage to a nuclear reactor and resulted in radiation
leaks, population displacement, and an energy-saving movement “Setsuden."
We selected this narrative based on a pilot study demonstrating that it resulted
in the most diverse set of hashtags within a set of tested narratives related to
natural and financial disasters. This is likely because the narrative describes a
rich set of causal relations (a generative causal chain producing a branching
common cause sequence) and included both negative (e.g., displacement,
poisoning) and positive effects (e.g., energy saving movement). S/ Appendix,
Fig. S1 illustrates the causal structure of the Fukushima disaster narrative in
Sl Appendix, Table S1.

4.1.3. Experimental design. We used the open-source framework oTree written
in Python (40), and hosted experiments on a Linux server. Participants joined the
experiment through a Qualtrics survey that directed participants to the network
experiment.

Our social network experiment proceeded in three steps. First, we randomly
assigned each participant as a player in a network that defined who may
interact with whom on a given trial. Second, we assigned interactions between
individual participants on each trial. Third, we rewarded participants based on
the outcome of their interactions. We can specify this process using graph
theory notation. The first step is to initialize a fixed graph G(N, E), defined by
a set N nodes representing individual participants connected through an edge
set E. We discuss below the specific graph structures used. The second step
iterates over T trials. On a given trial t € T, connection (edge) configurations
follow mixing participants randomly within a participant's neighborhood. The
third step is to identify and reward coordinated behavior. If the response
from participant n; on trial t is rit, then participants n; and n; coordinate
ifrf = r]t
4.1.4. Procedure. The experiment consisted of three blocks: a preinteraction
block, a networked interaction block, and a postinteraction block, as shown in
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Fig. 1. In the preinteraction block, participants read a four-paragraph narrative
describing the Fukushima nuclear disaster, and then were asked to write a
"tweet” (within a 140-character limit) and ten hashtags characterizing the events
described in the narrative.

In the network interaction block, participants joined a network experiment
with real-time interaction via an online platform using the Python framework
oTree (40). Participants were assigned to one of six experimental conditions
based on the size of the network (N = 20; 50; 100) and network structure
(spatially embedded and homogeneously mixed; see Fig. 5). Regardless of
network size, nodes in spatial networks have a consistent neighborhood size
k = 4, meaning each participantwould interactwith only four other participants
during the entire experiment. Neighborhood size in homogeneous networks is
N — 1, as each participant can interact with any of the remaining participants. A
consequence is that the network diameter (i.e., the largest geodesic distance in
the connected network) was consistently 1in all tested homogeneous networks,
but grows as a function of size in spatial networks. Previous research showed
that both features of network topology (i.e., neighborhood size and network
diameter) uniquely influence the emergence of shared behavior in online
networks (41).

The networked interaction block consisted of 40 trials, in which participants
interacted with their partners based on the edge structure in the assigned
network. In the Hashtag Game, on each trial, participants were instructed to
write a single hashtag describing the narrative they read in the preinteraction
block. After participants submitted their hashtag response, they were then
presented with a new page showing their own hashtag response, their
partner's hashtag response, whether they received a point for matching
responses with their partner, and their cumulative reward points. In the Name
Game, on each trial, participants were shown an image of a woman's face
(same image across all trials) and asked to write a name that describes the
face. After participants submitted their name response, they were presented
with a new page showing their own name and their matched neighbor's
name, whether they received a point for matching, and their cumulative
rewards.

Following the networked interaction block, participants entered a postin-
teraction block in which they wrote one more "tweet" for the same narrative
and another ten hashtags describing the Fukushima nuclear disaster before
providing demographic information. One consequence of these two network
structures is not only who is connected to who, but also the amount of repeated
interactions a participant has with their neighborhood. The expected number of
times a participant interacts with their full set of neighbors across an experiment
is N—L . This means, in the fully connected condition (i.e., homogeneously

mixed), participants are expected to interact with their full set of neighbors 2
times when N = 20, 81.6% of their neighbors when N = 50, and 40.4% of
their neighbors when N = 100. Meanwhile, regardless of the size of spatially
embedded network, participants will interact with their full set of neighbors a
total of 10 times across 40 trials. These conditions allow us to contrast the effect
of neighborhood size relative to ties across the network, and to determine
the impact of repeated interactions between pairs of partners to produce
dominant behaviors (e.g., participants in the network responding in a consistent
manner).

Fig. 5. Two network structures tested in this experiment. Homogeneously
mixed (Left) and spatially embedded (Right) networks with N = 10 nodes.
Edges drawn with a solid line represent the neighborhoods for a hypothetical
node 1 (colored yellow) in both networks. As a network’s size grows, the
diameter of spatial networks grow whereas homogeneous networks maintain
a diameter of 1.
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Data, Materials, and Software Availability. Anonymized experimental data
and code have been deposited on GitHub at https://github.com/jpriniski/
NetCom (42)
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