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Significance 

Digital media and online social 
networks have upended how 
narratives are constructed and 
shared, shaping cognition and 
culture in unexpected ways. 
Individuals within these networks 
have increased narrative agency, 
which enables them to directly 
contribute to and share evolving 
stories. Understanding the 
reflexive processes between 
individual and networked group 
narrative dynamics requires 
new forms of behavioral 
experimentation and modeling. 
We conducted a large-scale 
online social network experiment 
on narrative interaction, analyzed 
language dynamics using 
agent-based modeling, and 
developed quantitative measures 
of narrative alignment. Results 
reveal how network structure 
interacts with individual 
decision-making to influence the 
dynamics and semantic content 
of shared beliefs, with 
implications for understanding 
how narrative information flows 
through online networks with 
dierent neighborhood 
connections. 

How do shared narratives emerge in decentralized online networks? Prior research 
using simplified group coordination tasks (e.g., face-naming) shows network structure 
shapes group consensus, but the underlying cognitive mechanisms remain unclear. 
Here, we examine how network structure influences the emergence and semantic 
content of shared narrative beliefs in experimental online social networks, using natural 
language processing measures and agent-based modeling. Media content with complex 
causal structure attenuates network structure effects by encouraging longer exploration 
of background knowledge. Yet network structure still shapes the narrative content 
communicated. An embedding-based narrative alignment measure shows that fully 
connected groups orient their interactions more toward communicating causes of an 
event, whereas locally connected networks emphasize the event’s effects. A group’s 
network structure also influences representational and language change in personal 
narratives: participants in fully connected networks showed the largest increase in 
causal language in personal narratives written after interaction, which also orient more 
around the narrative’s causal events. 

online networks | narratives | group dynamics | digital media | NLP 

Digital media and online networks have transformed how narratives are structured and 
circulated. Individual and collective sense-making has been transformed by the seemingly 
ubiquitous production and sharing of hashtags, short-form text, images, and videos 
(1, 2), with real-world impacts on people’s identities (3, 4), beliefs about religion (5) and 
science (6), and collective organizing (2, 7–9). Yet it is unclear how individual decision-
making interacts with a group’s network structure to shape the dynamics and content of 
collective narratives. Real-world narrative and decision dynamics are difficult to model 
(10–12) and social media communication is not amenable to experimental control. Prior 
social network experiments have demonstrated how network structures shape collective 
outcomes through naming tasks (13–15). However, the interaction materials in these 
experiments were designed to study coordination driven by functional communication 
needs, rather than to examine how individuals’ causal beliefs and personal narratives 
evolve as networked interactions unfold. 

To address this gap, we collected a rich set of narrative interaction data through an 
online experimental platform spanning multiple network sizes, two distinct network 
structures, and two types of media content (Fig. 1). Our experimental environment 
extends long-standing designs using group coordination tasks to measure the effects of 
varying social network connectivity on convention formation and adoption of shared 
beliefs (16–21). Participants first read narrative materials detailing a real-world disaster 
with an inherent causal structure, termed the focal narrative, and were asked to write 
tweet-like statements about the disaster, termed personal narratives. Subsequently, 
they were assigned to one of two networked interaction environments. For one 
group, participants interacted in a Hashtag Game by aiming to generate hashtags that 
matched those generated by network neighbors and concisely characterized the disaster 
narrative. For the other group, participants interacted in the Name Game, replicating 
Centola and Baronchelli’s (2015) face-naming task, grounded in the formal theory of 
convention formation and illustrating how group-level language conventions emerge 
from individuals’ functional need to coordinate responses with their network neighbors 
(13, 22, 23). Both groups were offered identical rewards, incentivizing individuals 
to match the responses of their network neighbors. The Name Game serves as an 
effective comparison for narrative coordination in the Hashtag Game because naming 
conventions, unlike narrative-specific hashtags, are functionally interchangeable and do 
not require background knowledge about causal event structure. 
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This study tests how interactions over media with inherent 
causal structure impact individual decisions and group dynamics, 
and how network structure impacts the semantic content of 
narrative interactions. As shown in Fig. 1A, we hypothesize 
that network structure and the causal model evoked by a 
narrative’s media content jointly influence consensus dynamics 
through the decisions individuals make to coordinate with 
network neighbors. Individuals update beliefs and language to 
coordinate with their social circles by integrating information 
gathered from social context with their own prior knowledge 
about the event (24, 25). This real-time integration process 
impacts both group-level consensus and shifts individual causal 
understanding about the event over time, even though in-
dividuals are only rewarded for successful local coordination 
with network neighbors without awareness of broader group 
consensus. This hypothesized framework implies observable 
effects at both the individual and collective levels. Hence, 
our analysis examines how the distribution of individual-level 
decisions shifts over time, alongside the dynamics of consensus 
formation at the group level. Findings reveal that media content 
with inherent causal structure encourages individuals to explore 
their prior knowledge for a longer period of time during 
networked interaction rather than quickly mirror neighbors’ 
responses in social context, which attenuates the effect of 
fully connected network structures on the adoption of shared 
beliefs. 

To better explain the intertwined, bidirectional relationship 
between individual decisions and how information spreads 
through social context, we developed a computational network 
model composed of Context Aware Agents (CAA). The CAA 
model simulates how individual agents integrate prior knowledge 
about causal information with social information to coordinate 
locally. By comparing human and model performance across 
experimental conditions, we evaluate the model’s ability to 
capture both the dynamics of human consensus formation 
and decision strategy change at the individual level. We also 
compared CAA model simulations with a computational model 
developed for the Name Game, in which language outputs 
are functionally interchangeable (26), to highlight the role 
prior knowledge about narrative information plays in effective 
coordination. Simulations from the CAA model corroborate 
experimental results demonstrating that, when agents explore 
prior knowledge for longer, consensus is more difficult to achieve 
in fully connected networks. 

To examine how the causal content of language data fluctuated 
during and after networked interactions, we applied two custom-
built Natural Language Processing (NLP) pipelines to analyze 
the semantic content in the networked communications and 
personal narratives of participants. As described in Fig. 1A, 
network structure influences the array of information individuals 
encounter in social interaction, which in turn affects their 
narrative frame; the components of the causal model with 
which a neighborhood aligns their responses. We developed an 
embedding-based narrative alignment measure that map hashtags 
to subcomponents of the narrative’s text, finding that more 
complete mixing of interactions in fully connected networks 
orients individual responses toward the causes of the event, 
while networks with separated neighborhoods reward more 
divergent local frames with responses clustered around various 
effects of the event. We also applied a causal language NLP 
measure (27) to participant’s tweet-like statements to assess 
how networked interactions influenced the content of personal 
narratives, finding that participants in fully connected hashtag-

matching networks most significantly increased their use of causal 
language surrounding the disaster’s causes. 

1. Results 

Fig. 1B provides an overview of the experiment. We col-
lected 41,600 interactions from 1,040 participants across 26 
experimental runs. A total of 989 subjects provided complete 
interaction data. Participants read a passage describing the 2011 
Fukushima nuclear disaster and its effects on local communities 
and the environment (SI Appendix, Table S1). They then 
composed a tweet-like (preinteraction) personal narrative about 
the event. Participants were assigned to a network interaction 
environment to complete either a Hashtag Game, which involved 
generating hashtags about the disaster narrative during networked 
interactions, or a Name Game (13) to generate a name for an 
image of a face (see details in SI Appendix, section S2). We 
also manipulated network structures, including homogeneously 
mixed (fully connected, N −1 neighbors) and spatially embedded 
(locally connected, 4 nearest neighbors) networks. Participants 
were financially incentivized to coordinate responses with net-
work neighbors. Following network interactions, all participants 
composed another tweet-like (postinteraction) personal narrative. 

A

B

Fig. 1. Panel (A): Theoretical diagram illustrating the relationships between 
hypothesized variables. Orange boxes indicate experimental manipulations, 
tan boxes represent informational inputs influencing decision-making, and 
teal boxes denote behavioral outcomes analyzed in the results. White boxes 
show where each set of results or relationships is discussed in the main 
text, with section numbers indicating where results for each core component 
are reported. Panel (B): Experiment procedure and networked interaction 
tasks. The experimental design follows three blocks. A single node (in yellow) 
highlights one participant’s tasks throughout. In the preinteraction block, 
all participants read the Fukushima nuclear disaster narrative encoding the 
graphical causal model (not shown to participants), and wrote a tweet-like 
personal narrative. In the networked interaction block, group communication 
varied by network structure (homogeneously mixed vs. spatially embedded) 
and interaction content (narrative via hashtag matching vs. a Name Game 
control from Centola and Baronchelli, 2015). Participants interacted with 
network neighbors for 40 trials, receiving one point per matching response; 
the highest scorer received a financial reward. In the postinteraction block, 
participants again wrote a personal narrative. See SI Appendix, sections S1 
and S2 for more information about the experiment environment. 
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1.1. Narrative Coordination Attenuates the Eect of Fully 
Connected Network Structures on Consensus. We examine the 
proportion of a group providing the dominant or normative 
response on each trial as a measure of group-level response 
convergence (see SI Appendix, sections S4 and S5 for details). 
We fit a Beta-distributed GLM to predict the proportion of 
a group producing a dominant response as a function of trial 
number, neighborhood structure, content of network interaction, 
and interactions between these predictors, while controlling for 
network size. The data were well fit by a Beta GLM, given that 
the analysis focused on a dominant response and the response 
proportions lie between 0 and 1. As shown in Fig. 2A, shared 
responses emerged reliably over time in homogeneously mixed 
face-naming networks (𝛽Trial = 0.09, 95% CI [0.09, 0.10]), 
doing so more slowly in homogeneously mixed hashtag-matching 
networks (𝛽Trial :Hashtag = −0.04, 95% CI [−0.05, −0.03]), 
and substantially less so in spatially embedded face-naming 
networks (𝛽Trial :Spatial = −0.08, 95% CI [−0.09, −0.07]). 
These findings are consistent with previous research analyzing 
group communication over face naming (13). In addition, we 
found a significant three-way interaction effect between network 
structure, media content, and the number of trials. The rate 
at which shared responses emerge across network structures is 
shaped by the media content (𝛽Trial :Spatial :Hashtag = 0.05, 95% 
CI [0.04, 0.06]). This finding shows that participants interacting 
over media content with inherent causal relations can reduce 
the effect of a fully connected network structure on group-
level consensus. Specifically, homogeneously mixed networks 
reached consensus faster than spatially embedded networks for 
both hashtag-matching and face-naming, but there was less of 
a divergence in shared responses across network structures in 
the hashtag-matching condition. We corroborate this finding in 
SI Appendix, section S6 by predicting shifts in the entropy of each 
group’s full response distribution, which quantifies shifts in the 
tail of the response distribution beyond the normative response. 

1.2. Participants Explore New Responses Longer When Coor-
dinating over Media with Causal Structure. Responses are less 
interchangeable when they must cohere with a narrative’s causal 
structure (e.g., hashtags) as opposed to when a shared response is 
purely conventional, as in the case of assigning arbitrary category 
names (28) or labels for a face image (13, 22, 23). Hence, 
we hypothesize that coordinating labels for media content with 
causal structure increases participants’ exploration of possible 
responses, thereby increasing the variability of responses in social 
context and slowing the rate of group coordination, as has been 
suggested by simulation results of networked group behavior 
(16). To test this hypothesis in human-based groups, we analyzed 
how individual-level decision strategies changed over time as a 
function of network structure and media content. We consider 
four decision strategies that a participant could adopt while 
interacting with network neighbors. They could explore the 
response space by sampling a “new” response that neither a 
partner nor they themselves had produced on a previous trial. 
They could copy their partner’s response from the last trial, or 
repeat their own previous response (“repeat partner” and “repeat 
self,” respectively). In cases where there is agreement on a previous 
trial (i.e., repeat partner and repeat self are the same response), 
we code this as repeat self, as self-consistency is rewarded in these 
trials. They could also resample a response they remember from 
earlier interactions (“earlier context”), which could have been 
self-generated or received in a previous networked interaction 
trial. 

We fit a categorical Bayesian model to predict indi-
vidual decisions over time across experimental conditions. 
On average, participants were much less likely to repeat responses 
from social context in the Hashtag Game than in Name 
Game (𝛽Hashtag:RS = −1.36, 95% CI [−1.49, −1.26]; 𝛽Hashtag: 
RP = −1.04, 95% CI [−1.18, −0.90]); 𝛽Hashtag:EC = −0.39, 
95% CI [−0.53, −0.24]). In addition, the onset of different 
decisions varies across experimental conditions. Fig. 2B shows 

A B

Fig. 2. Panel (A): Onset of behavioral coherence during networked interaction. Plots show the proportion of each group adopting a dominant response over 
time, organized by group size (columns) and interaction media content (rows). Each line represents one experimental run, and each point shows the proportion 
of participants reporting the most common response (which may vary by trial within a run). As shown in the Top plots, while groups adopt shared hashtags, 
they do so more slowly than in the face-naming condition. Changes in response distribution entropy from these runs are shown in SI Appendix, Fig. S2. Panel (B): 
Dynamics of individual decisions during networked interaction. Plots show the proportion of each group using one of four decision strategies (sampling new 
responses, repeating a partner’s last response, repeating one’s own previous response, or resampling from earlier context) over 40 trials, by network structure 
(spatially embedded vs. homogeneously mixed) and media content (hashtag-matching vs. face-naming). Cases where both the participant and their partner 
give the same response (i.e., rewarded responses) are coded as repeat self. Proportions reflect averages across runs for each size, structure, and content 
condition. As shown in the Top panels, hashtag-matching groups sample new responses (black lines) for longer, while face-naming groups (Bottom panels) 
adopt a self-consistent strategy (orange lines) more quickly. 
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the number of participants exploring new responses (black) 
and exploiting a response through repeating a past response 
(orange). Each panel represents a network experiment condition. 
The number of participants sampling a new hashtag response 
decreased gradually in the Hashtag Game, but fell immediately 
for new names in the Name Game. 

We hypothesize that prior knowledge about media content 
and the lack of interchangeability of responses plays a key role 
in the prolonged exploration and slower convergence seen in 
the Hashtag Game. As shown in SI Appendix, Fig. S6, hashtags 
generated during network interactions often align with one of 
the eight discrete causal events described by the narrative. For 
example, individuals who wrote #Earthquake, #Tsunami, and 
#Setsuden on a given trial coordinated with their neighbors 
about 33% of the time. However, the most successful names 
were Emily (coordination on 65% of trials it was generated), 
Maddie (60%), and Taylor (60%). Their relative fitness is 
much higher than the highest coordinating hashtag (#Nuclear), 
which resulted in coordination around 40% of the time it was 
generated. Indeed, ten names have higher average coordination 
rates than the top hashtag. Participants are more willing to adopt 
names received in social context than hashtags, as there is less 
background knowledge shaping which responses are viable. Many 
of the names appear functionally interchangeable in a way that 
hashtags are not. For example, Mary and Emily are equally viable 
responses given the lack of causal content communicated by the 
face stimuli, whereas #Setsuden and #Tsunami isolate different 
causal relations that are not exchangeable. Therefore, face naming 
groups quickly reach consensus because responses encountered 
in social context are readily adopted and do not rely on any 
underlying causal understanding of media content, in contrast to 
hashtags about the nuclear disaster. 

Interestingly, network structure impacts decision dynamics 
in the Name Game, but not in the Hashtag Game. As shown 
in the orange lines on the Bottom panels of Fig. 2B, spatial 
(locally connected) face-naming networks show an asymptotic 
rise in the number of repeated responses, while homogeneous 
(fully connected) face-naming networks show a linear rise, with 
both groups reaching about 80% of participants exploiting a 
response by the end of the experiment (compared to around 
50% in hashtag networks). Repeated interactions in smaller 
neighborhoods can more directly shape individual learning when 
the interaction media does not require complex causal and 
situational understanding, as in the case for the spatial face-
naming networks. (We discuss how these factors impact the 
onset of local coordination in SI Appendix, section S7 and 
its implications for what constitutes shared meaning at the 
group level in SI Appendix, section S2.) We observed that 
network structures do not appear to impact dynamics of the 
decision strategies employed by individuals in the Hashtag Game. 
However, these structures could play a role in shaping the content 
communicated within networked interactions, which we will 
examine in the next section. 

1.3. Network Structure Shifts Narrative Alignment of Hashtags 
Generated During Interactions. While individual decisions and 
network structure interact to shape the distribution of responses 
across a group, these factors may shape the semantic content 
of responses as well. Numerous studies have shown that causal 
relations are central to narrative representation (29–32). To com-
pute how hashtag responses aligned with the causal model evoked 
by the disaster narrative, we developed a narrative alignment 
measure that leverages sentence-level semantic embeddings to 

project hashtags onto a lower-dimensional narrative alignment 
vector. The narrative alignment vector encodes the similarity of 
a hashtag to different components of the narrative, thus serving 
as a measure of an individual’s narrative credence at a given point 
in time. 

As described in Fig. 3A, each hashtag’s narrative alignment 
vector is computed by 1) breaking the Fukushima disaster 
narrative text into causal events based on the underlying causal 
model; 2) computing embeddings for each hashtag response 
and for the sentences of each event; 3) computing cosine 
similarity between each hashtag embedding and each narrative 
event embedding, yielding a vector of cosine similarities; and 4) 
computing alignment scores by normalizing the similarity vector 
with a softmax function such that the values sum to one. 

Fig. 3B shows that participants in both network structures 
generated hashtags that aligned more with the narrative topic 
sentence and causes of the disaster than the effects of the disaster. 
Importantly, participants in homogeneously mixed networks 
produced hashtags with significantly higher alignment on both 
the general topic descriptions of the disaster (t(537) = 2.68, 
P < 0.01) and causes of the disaster (t(560) = 3.32, P < 0.001) 
compared to those in spatially embedded networks. In spatially 

A B 

C D 

Fig. 3. Panel (A): The Narrative Alignment Measure aligns hashtags with 
the causal structure of the disaster narrative. Cosine similarity is computed 
between each hashtag and the text representing each event in the narrative. 
The resulting similarity values (one per event) are normalized using a softmax 
function scaled by tau, producing a vector that sums to one and proxies a 
narrative credence value. Panel (B): Mean narrative alignment score reflects 
the average alignment vector for each participant (see SI Appendix for details). 
While participants in both network structures generated hashtags aligned 
with topic sentences and causes of the disaster, homogeneously mixed 
groups showed greater alignment on these entities. In contrast, spatially 
embedded groups showed more alignment with the disaster’s eects. Panel 
(C): The causal claims pipeline identifies documents with explicit causal 
language in personal narratives. If a transformer model detects a causal claim, 
a causal topic is identified via semantic clustering. Causal language shift is 
defined as the dierence in causal claims before and after interaction. Panel 
(D): Shifts in causal claims following networked interaction. Mean dierence 
scores represent the change in number of causal claims per participant under 
each interaction condition. Both content conditions shared the same pre- and 
postinteraction phases (Fig. 1). Participants in homogeneously mixed hashtag 
networks showed the largest increase in causal language, with most added 
claims focusing on causes of the disaster. 
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embedded networks, participants generated hashtags that were 
significantly more aligned with first-order effects described in the 
narrative (i.e., those directly resulting from the disaster event) 
(t(565) = −4.42, P < 0.001) as well as second-order effects 
(i.e., subsequent effects indirectly resulting from the disaster 
event) (t(498) = −5.34, P < 0.001). There was no significant 
difference across network structures in hashtag alignment to 
the damage to the nuclear power plant event (t(568) = 0.99, 
P = 0.324). 

The asymmetry in narrative alignment of generated hashtags 
across network structures is likely due to divergences in which 
narrative information is rewarded and communicated via partic-
ipants’ social interactions. Social rewards can steer individuals 
away from background priors during networked interactions 
(SI Appendix, Fig. S5), resulting in smaller neighborhoods 
coordinating around lower-prior hashtag responses (i.e., shifting 
away from topic and disaster causes toward effects of the disaster). 
Participants in homogeneously mixed networks are exposed to 
responses from a wider array of participants than those in spatially 
embedded networks (N −1 participants in homogeneously mixed 
networks compared to 4 neighbors in all spatially embedded 
networks). Indeed, homogeneously mixed participants are em-
bedded in social contexts with higher entropy (i.e., variation) 
among partners’ hashtag responses (t = 3.35, P < 0.001) 
than participants in spatially embedded networks. Therefore, 
participants in homogeneously connected networks are more 
likely to rely on hashtag responses representative of back-
ground priors and causes of the disaster event. In contrast, 
the smaller social neighborhoods and increased repetition of 
pairwise interactions in spatially embedded networks can steer 
people away from background knowledge. The lack of across-
network connections in spatially embedded networks can further 
lead individuals to become entrenched in localized narrative 
frames (i.e., those resulting from coordination rewards rather 
than background knowledge, which is assumed to be constant 
across participants). As a result, participants in separable social 
neighborhoods in spatially embedded networks learn to align 
hashtags with different features of the focal narrative, including 
different effects due to increased social reinforcement in smaller 
neighborhoods. Priors win out quickly in homogeneously mixed 
networks, where there is more mixing of hashtags (33). To 
illustrate the semantic content of shared responses emerging 
across conditions, SI Appendix, Figs. S3 and S4 present color 
maps of full groups’ responses. These figures show how semantic 
coherence is achieved as agents mix their responses across smaller 
(N = 20) and larger (N = 50) groups. 

1.4. Fully Connected Networks Shift Causal Language of Per-
sonal Narratives Toward Causes in Focal Narrative. Before and 
after network interaction, participants wrote tweet-like personal 
narratives about the Fukushima nuclear disaster. We used a 
causal language analysis pipeline (27) to analyze the narratives 
generated by participants. The causal language analysis pipeline 
identifies causal tuples in each document. A document is labeled 
as having a causal relation if there is a span of tokens belonging 
to a cause and a span of tokens belonging to an effect within 
the document. The algorithm then finds cause and effect topics 
without supervision by clustering the cause-and-effect spans 
based on their semantic topics (see SI Appendix, section S11 
for details on the pipeline). The pipeline automatically identified 
each of the causal events in the disaster narrative in addition to 
semantically related topics that were not explicitly described in 
the narrative text (SI Appendix, Table S5). We examine how these 

topic distributions change in personal narratives composed in 
the pre- to postinteraction phases of our experimental networked 
environment. 

We conducted an independent-sample t test on the difference 
scores (i.e., number of causal claims generated after interaction 
minus number of causal claims generated before interaction 
for each participant) across both levels of network structure 
and media content. As shown in Fig. 3D, hashtag-matching, 
homogeneously mixed networks yielded a significant increase 
of causal language after networked interactions (t(261) = 
4.01, P < 0.001). Neither hashtag-spatial (t(257) = 0.95, 
P = 0.345), nor the face-naming networks had a significant shift 
(homogeneous difference values, t(201) = 1.16, P = 0.249); 
spatial: t(203) = 1.40, P = 0.164). SI Appendix, Fig. S7 
shows the distribution of difference scores in each of the 
network structure and interaction content conditions. To ensure 
that this effect is robust we additionally fit a Gaussian hurdle 
model to the distribution of difference scores as a function of 
network interactions conditions as linear predictors (structure 
and interaction content) (SI Appendix, section S11). 

We now narrow our analysis of causal language shifts to 
the 67% of participants who expressed at least one causal 
claim identified by the pipeline. We analyzed which specific 
causal relationships increased and decreased in personal narratives 
after networked interactions. We computed the subject-level 
difference scores (postinteraction count minus preinteraction 
count) for each causal relation for each participant. We then 
performed one-sample t tests coupled with a multiple comparison 
correction procedure using a False Discovery Rate of 0.05 (SI 
Appendix, Tables S6–S9). For both of the hashtag-matching 
groups, causal language change centered around the three causal 
events (“Earthquake,” “Tsunami,” and “Nuclear Disaster”) de-
scribing the generative causal chain in the narrative. Furthermore, 
homogeneously mixed hashtag-matching interactions resulted in 
significantly more participants in the group eliciting the full 
causal chain in their personal narratives, that is Earthquake 
causes Tsunami (P = 0.011), and Tsunami causes Nuclear 
Disaster (P = 0.018). The spatially embedded hashtag-matching 
networks showed a smaller shift toward the initial generative 
causal chain (P = 0.048 for both causal relations). This shift 
in causal language is concordant with the narrative alignment 
results for hashtags generated during the networked interaction 
phase. While both groups were more prone to generate hashtags 
that signaled the causes of the disaster, homogeneously mixed 
groups were more likely than spatial groups to generate hashtags 
that aligned with the causal events. The results differ for the 
face-naming groups, where the causal chain was not significantly 
increased in either network condition. These findings suggest that 
network interactions that produce wider exposure to the causal 
and semantic content via only hashtag responses have a sub-
stantial impact on the causal content referenced in participants’ 
personal narratives of the event. This network interaction effect 
on causal language is less pronounced in spatially embedded 
networks, and nearly absent when groups coordinate around 
causally irrelevant materials (i.e., naming a face rather than 
writing hashtags for the narrative). 

2. Simulating Consensus Dynamics with 
Networks of Context Aware Agents (CAA) 

To model how network structure and decision strategies jointly 
influence the onset of consensus, we developed a network model 
of Context Aware Agents (CAA) to simulate the real-time 

PNAS 2026 Vol. 123 No. 2 e2520483123 https://doi.org/10.1073/pnas.2520483123 5 of 8 

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
C

 L
os

 A
ng

el
es

 o
n 

Ja
nu

ar
y 

7,
 2

02
6 

fr
om

 I
P 

ad
dr

es
s 

13
1.

17
9.

22
0.

1.

https://www.pnas.org/lookup/doi/10.1073/pnas.2520483123#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2520483123#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2520483123#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2520483123#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2520483123#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2520483123#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2520483123#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2520483123#supplementary-materials


updating of individuals’ decision strategies for integrating their 
prior knowledge with information gathered from social context 
during network interactions over the course of the experiment. 
Based on a parameter 𝛼, agents sample responses from prior 
distributions (background knowledge about possible responses 
in face or hashtag conditions, see SI Appendix, Fig. S5) or from 
social context (memory trace of interaction history). Background 
knowledge about media content becomes progressively less 
important and reliance on social context increases as the number 
of trials increases. See SI Appendix, section S12 for details on the 
models. 

We compared the CAA model performance with simulations 
from the computational model implemented for the Name Game 
(13, 26). As shown in Fig. 4A, the comparison model randomly 
assigns one individual from each pair to be the speaker and the 
other to be the hearer. If the speaker’s response is already in 
the hearer’s vocabulary, each of their vocabularies is updated 
to contain only that response, otherwise, the speaker’s response 
is added to the hearer’s vocabulary. The next response of each 
individual is a selection from their own updated vocabulary. 
In comparison to the CAA model, the comparison model 
does not take prior knowledge into account, and thus does 
not weigh between social context and background informa-
tion. 

Fig. 4B shows the entropy results for all four experimental 
conditions, where we compared experimental results (open 
points) with model predictions (triangular points). As shown in 
the Left subplots of Fig. 4B, we find that the comparison model 
without considering prior background knowledge consistently 
overestimates the rate of entropy decrease and does not change 
for either form of interaction media. These results stem from the 
lack of exploration of background knowledge in this model; it 
only takes advantage of an agent’s social context and is a greedier 
social learning algorithm than the CAA model. The CAA model 
provides a better fit in all four experimental conditions as shown 
in the Right subplots of Fig. 4B. We also find that the CAA model 
is robust to parameter variation. For example, the performance 
remains highly similar whether all agents use the same parameter 
value of 𝛼 or individual agents draw values from a distribution 
(SI Appendix, section S12). 

A B

Fig. 4. Overview of computational models and simulation results. Panel (A) 
describes the computational model developed for the Name Game (13, 26) 
and the Context Aware Agent (CAA) model developed in the present paper. 
The colored squares indicate possible responses in each player’s vocabulary 
for the interaction tasks (e.g., names in the face-naming task, and hashtags 
in the hashtag-matching task). The illustrations show how players (P1 and 
P2) update their vocabulary through the interaction task. Panel (B) shows the 
simulation results of normalized entropy across runs for each content and 
structure condition against humans from both computational models. 𝛼 val-
ues in the CAA panels measure how much agents sample background priors 
when generating responses, which attenuates the eect of network structure 
on group outcomes (the degree of separation between red and blue lines at 
trial = 40). 

3. Discussion 

Demonstrating how individual decisions interact with neighbor-
hood structure to shape the flow of narrative information in social 
networks is critical for understanding how decentralized groups 
can reach consensus over complex information. We replicated 
long-standing empirical findings that information can readily 
spread across homogeneously mixed (fully connected) networks, 
which facilitates shared language and beliefs about narrative 
materials. However, when coordinating labels based on narrative 
stimuli with inherent causal structure, participants explore possi-
ble responses for longer, leading to increased uncertainty in social 
context and a slower onset of shared beliefs. Well-demonstrated 
network effects on collective beliefs are therefore attenuated 
by the causal understanding involved in individual decision-
making. Network structure still impacts the content of narrative 
interactions, however. Complete mixing during interactions 
in fully connected networks results in individuals orienting 
their responses toward the causes of an event. Local mixing 
in spatially embedded networks reinforces individual responses 
toward disparate narrative effects. Furthermore, groups in the 
homogeneously mixed hashtag-matching condition significantly 
increased the amount of causal relations in personal narratives 
after networked interactions, explicitly mentioning the causes 
of the disaster event. This shift in personal narratives suggests 
that exposure to causal information extracted from narrative 
interactions during network interaction (here via hashtags) has 
the potential to direct attention to specific features in long-form 
narratives and shift language used to describe those narratives. 

These findings suggest that interventions to foster narrative 
consensus should look beyond network rewiring. Future experi-
ments might look at the interaction between network structure 
and the causal framing of a narrative’s situation to manipulate 
the communicative context of a networked group: shifting how 
individuals frame a narrative prior to networked communications 
in order to establish the group’s narrative frame from which 
communication and social learning is carried out. Experiments 
on individuals show that metaphors can frame complex social 
phenomena and set narrative frames that impact individual’s 
beliefs and policy decision-making (34). Network extensions of 
these framing experiments can test how certain frames can more 
effectively impact group consensus dynamics. A limitation of our 
study is that the NLP models only focus on how language data 
aligns with the causal structure of the narrative stimuli. Network 
experiments on narrative frames will require NLP advances to 
better probe alignment with a narrative’s complete situation 
model, which includes elements of agency, time, and space in 
addition to causation (29, 31, 32). Future NLP models should 
parse a wider array of semantic relations to model shifts in 
situation models. Such models can more precisely measure how 
narrative frames vary across a group and change over the course 
of interactions with network neighbors. 

In this experiment, coordinating hashtags about a focal 
narrative serves as a proxy for how individuals use hashtags to 
coreference documents and enable broader narrative collabora-
tion across real-world online social networks (9, 35, 36). Focal 
hashtags are key for mapping personal narratives to a shared 
discussion and allow for collective organizing and discussion 
through hashtagging personal narratives. While direct incentives 
for using an effective focal hashtag on social networks in the 
wild do not exist, our experiment platform approximates the 
utility of gaining traction (i.e., virality) through coordination 
rewards. Future experiments will use narrative materials that 
probe political reasoning and more emotional valences, including 
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power, to test how different narratives can extend the experiment 
platform to study narrative dynamics akin to those in online 
networks found in the wild. 

4. Materials and Methods 

This section includes material first presented in JHP’s doctoral dissertation (37), 
and in conference articles presented at the Cognitive Science Society (38, 39). 

4.1. Preregistration. We preregistered the experimental design, key hypothe-
ses, and statistical analysis framework on the Open Science Framework at         https:// 
osf.io/598dt?mode=&revisionId=&view_only=. All code and anonymized data 
for the presented results and software for replicating the experiments can be 
found at the following GitHub repository https://github.com/jpriniski/NetCom. 
4.1.1. Participants. We sampled a total of N = 1,040 participants from 
the Prolific and UCLA SONA subject pools, and placed them into one of 26 
experimental runs. A total of 989 subjects provided complete data. Experimental 
runs vary according to three factors: the size of a network (N = 20, 50, 100), 
its connectivity structure (homogeneously mixed/fully connected; spatially 
embedded/ring-like), and the content of interaction (hashtag; face-name) (total 
nodes N = 1,040). We collected a total of twelve experimental runs for face 
interaction (three runs for each network structure of sizes N = 20 and N = 50), 
and fourteen experimental runs for hashtag interaction (three runs for each 
network structure of sizes N = 20 and N = 50, and a single run of each 
network structure for N = 100). Participants N = 20 and N = 50 con-
ditions were sampled using Prolific. For the N = 100 condition, we recruited 
undergraduates in the Department of Psychology at UCLA through SONA subject 
pools. We posted initial recruitment surveys a week prior to each run in SONA 
and a few hours prior to each run in Prolific. Participants who received the 
most points at the end of the experiment received an additional $10 bonus. All 
experiments and analyses were approved by the UCLA institutional review board 
under submission IRB-22-1184. All participants provided informed consent prior 
to participation. 
4.1.2. Materials. Across all network conditions, participants first read a four-
paragraph narrative description of the 2011 Fukushima nuclear disaster prior to 
interaction in a network. The narrative explains how a large earthquake triggered 
a tsunami that caused damage to a nuclear reactor and resulted in radiation 
leaks, population displacement, and an energy-saving movement “Setsuden.” 
We selected this narrative based on a pilot study demonstrating that it resulted 
in the most diverse set of hashtags within a set of tested narratives related to 
natural and financial disasters. This is likely because the narrative describes a 
rich set of causal relations (a generative causal chain producing a branching 
common cause sequence) and included both negative (e.g., displacement, 
poisoning) and positive effects (e.g., energy saving movement). SI Appendix, 
Fig. S1 illustrates the causal structure of the Fukushima disaster narrative in 
SI Appendix, Table S1. 
4.1.3. Experimental design. We used the open-source framework oTree written 
in Python (40), and hosted experiments on a Linux server. Participants joined the 
experiment through a Qualtrics survey that directed participants to the network 
experiment. 

Our social network experiment proceeded in three steps. First, we randomly 
assigned each participant as a player in a network that defined who may 
interact with whom on a given trial. Second, we assigned interactions between 
individual participants on each trial. Third, we rewarded participants based on 
the outcome of their interactions. We can specify this process using graph 
theory notation. The first step is to initialize a fixed graph G(N, E), defined by 
a set N nodes representing individual participants connected through an edge 
set E. We discuss below the specific graph structures used. The second step 
iterates over T trials. On a given trial t ∈ T , connection (edge) configurations 
follow mixing participants randomly within a participant’s neighborhood. The 
third step is to identify and reward coordinated behavior. If the response 
from participant ni on trial t is rt , then participants ni and n coordinatei j  
if rt =i  rt .j   
4.1.4. Procedure. The experiment consisted of three blocks: a preinteraction 
block, a networked interaction block, and a postinteraction block, as shown in 

Fig. 1. In the preinteraction block, participants read a four-paragraph narrative 
describing the Fukushima nuclear disaster, and then were asked to write a 
“tweet” (within a 140-character limit) and ten hashtags characterizing the events 
described in the narrative. 

In the network interaction block, participants joined a network experiment 
with real-time interaction via an online platform using the Python framework 
oTree (40). Participants were assigned to one of six experimental conditions 
based on the size of the network (N = 20; 50; 100) and network structure 
(spatially embedded and homogeneously mixed; see Fig. 5). Regardless of 
network size, nodes in spatial networks have a consistent neighborhood size 
k = 4, meaning each participant would interact with only four other participants 
during the entire experiment. Neighborhood size in homogeneous networks is 
N − 1, as each participant can interact with any of the remaining participants. A 
consequence is that the network diameter (i.e., the largest geodesic distance in 
the connected network) was consistently 1 in all tested homogeneous networks, 
but grows as a function of size in spatial networks. Previous research showed 
that both features of network topology (i.e., neighborhood size and network 
diameter) uniquely influence the emergence of shared behavior in online 
networks (41). 

The networked interaction block consisted of 40 trials, in which participants 
interacted with their partners based on the edge structure in the assigned 
network. In the Hashtag Game, on each trial, participants were instructed to 
write a single hashtag describing the narrative they read in the preinteraction 
block. After participants submitted their hashtag response, they were then 
presented with a new page showing their own hashtag response, their 
partner’s hashtag response, whether they received a point for matching 
responses with their partner, and their cumulative reward points. In the Name 
Game, on each trial, participants were shown an image of a woman’s face 
(same image across all trials) and asked to write a name that describes the 
face. After participants submitted their name response, they were presented 
with a new page showing their own name and their matched neighbor’s 
name, whether they received a point for matching, and their cumulative 
rewards. 

Following the networked interaction block, participants entered a postin-
teraction block in which they wrote one more “tweet” for the same narrative 
and another ten hashtags describing the Fukushima nuclear disaster before 
providing demographic information. One consequence of these two network 
structures is not only who is connected to who, but also the amount of repeated 
interactions a participant has with their neighborhood. The expected number of 
times a participant interacts with their full set of neighbors across an experiment 
is T 

−
. This means, in the fullyN 1   connected condition (i.e., homogeneously  

mixed), participants are expected to interact with their full set of neighbors 2 
times when N = 20, 81.6% of their neighbors when N = 50, and 40.4% of 
their neighbors when N = 100. Meanwhile, regardless of the size of spatially 
embedded network, participants will interact with their full set of neighbors a 
total of 10 times across 40 trials. These conditions allow us to contrast the effect 
of neighborhood size relative to ties across the network, and to determine 
the impact of repeated interactions between pairs of partners to produce 
dominant behaviors (e.g., participants in the network responding in a consistent 
manner). 

Fig. 5. Two network structures tested in this experiment. Homogeneously 
mixed (Left) and spatially embedded (Right) networks with N = 10 nodes. 
Edges drawn with a solid line represent the neighborhoods for a hypothetical 
node 1 (colored yellow) in both networks. As a network’s size grows, the 
diameter of spatial networks grow whereas homogeneous networks maintain 
a diameter of 1. 
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Data, Materials, and Software Availability. Anonymized experimental data 
and code have been deposited on GitHub at https://github.com/jpriniski/ 
NetCom (42) 
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