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Social media data tend to cluster around events and themes. Local newsworthy events, sports team
victories or defeats, abnormal weather patterns and globally trending topics all influence the content of
online discussion. The automated discovery of these underlying themes from corpora of text is of interest
to numerous academic fields as well as to law enforcement organizations and commercial users. One
useful class of tools to deal with such problems are topic models, which attempt to recover latent groups
of word associations from the text. However, it is clear that these topics may also exhibit patterns in both
time and space. The recovery of such patterns complements the analysis of the text itself and in many cases
provides additional context. In this work we describe two methods for mining interesting spatio-temporal
dynamics and relations among topics, one that compares the topic distributions as histograms in space
and time and another that models topics over time as temporal or spatio-temporal Hawkes process with
exponential trigger functions. Both methods may be used to discover topics with abnormal distributions
in space and time. The second method also allows for self-exciting topics and can recover intertopic
relationships (excitation or inhibition) in both time and space. We apply these methods to a geo-tagged
Twitter dataset and provide analysis and discussion of the results.
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1. Introduction

It is apparent that microblogs such as Twitter are composed of a vast number of diverse topics. Unfiltered
samples from the Twitter ‘firechose’ often contain tweets on wide variety of topics such as local politics,
sporting events, daily activities, weather, local crime and organized public demonstrations. The summa-
rization and analysis of these data is of interest to social scientists, commercial groups, law enforcement
and government agencies among others.

However, the extraction of semantic information from raw text is a non-trivial task. A large amount
of literature has been devoted to modelling and extracting latent themes from both Twitter and large
text corpora in general. Known as topic models, these methods use latent word associations (referred
to as topics) to capture the underlying themes in the documents (i.e. the Tweets). In practice many
practitioners use a very large number of topics due to the diversity of the text. While originally intended
to summarize latent themes in the data, the topics may be so numerous that they themselves may require
automated analysis.

At the same time, we are often able to recover more information from the media source than just
the text content. Microblog data often include metadata such as posting time and location, allowing us
to produce distributions of documents over physical space and time. In the context of a spatio-temporal
process, some topics are observed in Tweets purely at random (topics associated with teenage romance
perhaps) or on a periodic basis with spatial clusters (topics about rush hour traffic, local weather or major
holidays). Still others exhibit patterns quite different from baseline Twitter usage. Natural disasters, one-
time fads and large events (including mass civil disturbances) can be expected to produce anomalous
Twitter content.

It is useful then to produce automated topic analysis methods focused around identifying spatio-
temporal patterns. Topics with temporal or spatial distributions that are anomalous with respect to the
background rate of document occurrence may be of further interest to analysts and may be indicative of
a corresponding real world event. Furthermore, given a specific location and/or time, it is helpful to be
able to find associated topics (and thereby documents).

Topics may also exhibit temporal or spatio-temporal couplings. Social events may trigger further
events, sports team victories or defeats may lead to the discussion of the future of a player or coach’s
employment or a controversial post may trigger an explosion of heated responses. In terms of topics
and Tweets, the observation of some Tweets from a topic may precede the observation of Tweets from
another related topic with some regularity. In a predictive sense, the observation of Tweets from some
topics may contain information about the incidence rate of Tweets from another topic (Ding ez al., 2013;
Ver Steeg & Galstyan, 2012). For example, if we observe a number of observations in a bad weather
topic, we might expect to see a number of observations in the traffic topic. On a larger scale, the pairwise
coupling of topics is indicative of a possible latent network structure.

In this work we give two methods for the automated mining of temporally and spatially anomalous
topics generated by non-negative matrix factorization (NMF). One method is based on the earthmover’s
distance (EMD) and provides a distance measure of a topic from a background distribution. The other
is based on the Hawkes process, which is a self-exciting point process model. The second provides
estimates of latent network structures and has associated goodness-of-fit measures. To validate these
methods we process 500,000 geolocalized Twitter messages from the Los Angeles area over a 10-month
period. The Tweets are timestamped and geo-tagged (geographical location information from the user
attached to the Tweet).
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2. Previous work

Our methods build upon recent literature concerning the spatio-temporal analysis of human activity
patterns, topic modelling, anomaly detection and self-exciting point processes.

2.1. Spatio-temporal human activity

It is well known that human activity is not uniformly distributed in space or time. Particular activity types
tend to cluster in local spatial regions, while the frequencies of those behaviours also tend to cluster in
time. The clustered, bursty nature of human behaviour has huge implications for the organization and
function of urban systems. Our own previous work has concentrated on the spatio-temporal dynamics
of crime which, like other aspects of human behaviour, forms dynamic spatio-temporal hotspots (Lewis
& Mohler, 2011; Mohler, 2014; Woodworth et al., 2014).

Outside of this, mobile device usage has been shown to also have a clustered nature (Gonzalez et al.,
2008), following human behaviour. The rise of social media and mobile data allows similar analyses to
be taken a step further. One prime example is the use of Foursquare data to make inferences about user
activities, geographic regions and local events (Noulas et al., 2011).

2.2. Microblogs and related topic models

Twitter as a source of data for academic study has been in use since approximately 2007 (Java et al.,
2007), when it was treated as a social network. Since then, it has been a popular topic of study, so much
that there are papers about people writing about Twitter (Williams ef al., 2013). A growing proportion of
studies look principally at Twitter content; it has been suggested that Twitter, while presenting a social
network and an information diffusion network, may be closer to a media distribution site, where the
media is user produced (Kwak et al., 2010). Analysis of the text content includes both general models
as well as Twitter-specific models (Hong & Davison, 2010; Zhao et al., 2011). Grindrod (2014) looks
at a dynamic random walk time series model for event-driven spikes in Twitter data and outlines many
of the current state-of-the-art approaches in the area.

Several previous works have introduced geospatial or time-dependent topic models. In particular
Cataldi et al. (2010) introduce a time-dependent topic model. Similarly, both Yin et al. (2011) and Hong
et al. (2012) provide variants of geospatial topic models. In general these approaches differ from our
method in that they directly influence the chosen topics by their respective domain (time or space).
Though these are important contributions, the topics produced from these models may not accurately
describe the full corpus of text.

Along a different line is the much more recent exploration of topics on hidden information diffusion
graphs by He et al. (2015). This work also uses the Hawkes process but, instead of constructing separate
timelines for each topic, models each user as having a separate timeline. This excellent work parallels
our second method and uses a similar multivariate marked Hawkes process.

2.3. Spatial and temporal anomaly detection

Directly related to our first method is a work by Applegate ef al. (2011). The authors consider only
mobile phone usage data without content, applying an approximate EMD described in Shirdhonkar &
Jacobs (2008) to cluster temporal patterns across multiple cyclic periods (e.g. patterns over time of day
and day of the week between different users). Our work extends their approximate EMD from time-based
histograms to a histograms weighted by document content both in space and time.
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More related to our second method are event detection and summary methods. Twitter is known to
reflect real world events and news media activity.

Similar to our work, Zhao et al. (2011) use a Twitter generative text model based on latent Dirichlet
allocation (LDA), then match Topics between the generated Twitter model and New York Times articles.
This provides important groundwork for investigating temporal coupling between documents, though
not in a point process context.

2.4. Point process models for social interaction

Recently, several studies have modelled social interactions as linked Hawkes point processes. While not
analysing text content, nor, in general, microblog activity, these studies employ methods that are similar
to the ones explored in Sections 5 and 6.

In particular, Blundell ef al. (2012) model reciprocity in relationships from human interaction data
using linked Hawkes processes. The authors fit their model to several datasets, including selected threads
of the ENRON email corpus and the Militarized Interstate Dispute corpus. Following this work, Zhou
et al. (2013) provide a sparse, low-rank extension, using the same multidimensional Hawkes process to
model information diffusion across networks. This second set fits the model to a MemeTracker dataset,
a similar setting to Twitter.

A more technical review of the Hawkes process and relevant citations is given in Section 5.

3. Topic models

In order to extract latent topic variables from our text corpus, we transform our raw text data into a Bag-
of-Words vector form and then apply NMF with sparse constraints. The pre-processing work, while
involved and non-trivial, is not our focus nor do we introduce any innovations to the field and so is only
covered briefly here.

3.1. Pre-processing

As found in Ramage et al. (2010), Godin et al. (2013) and Hong & Davison (2010), we apply significant
pre-processing to our raw data before training our topic model. The steps here are undertaken in order:
1. We encode the text into ASCII, discarding any unicode characters. 2. We replace all double quotes
with the empty string. 3. We extract all user references and all hashtags, denoted, respectively, with @
or # at the beginning of a token. 4. We attempt to remove any urls, specifically anything prefixed with
‘http’. 5. We remove many non-alphanumeric characters, with the important exception of $ and @, with
the latter only in the case that it is the only character in the token (the @ symbol is significant in its
usage by Instagram in automatically generated Tweets). 6. We change all characters to lowercase. 7.
We remove any token on our Stop Words list, including a Twitter-specific stopwords list of the 50 most
common words observed in our dataset. 8. We remove any token observed less than 10 times. 9. We
partition the data by month in order to reduce the number of fad-like topics observed in each data set.

After pre-processing we form an ordered vocabulary and generate term-frequency vectors from the
documents. We concatenate these to form a data matrix D’, where each row is a document, and each
column represents a distinct word in our vocabulary. We immediately re-weight D’ using the TF-IDF
scheme (Salton & McGill, 1983). This re-weighted matrix we denote as D.

We denote the number of documents N, and the number of words in our vocabulary M; thus,
D € RVM For this analysis N > M. As a matrix of frequency counts, D only has non-negative entries.
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3.2. Non-negative matrix factorization

After forming our data matrix D, we then make the assumption that the rows of D are approximately
the additive combination of K non-negative topic vectors, where K < N. This is equivalent to making
the assumption that D is approximately of rank K, with the constraint that the subspace spanned by D
has a set of non-negative basis vectors and all of the rows of D have non-negative coordinates in that
basis.

Using this assumption, we have the following approximation D ~ WH?', where W is a matrix of
the coordinates of each document in the subspace of the rows of H”. This is the basic NMF (Lee &
Seung, 1999), which has the objective function J (W, H) = ||D — WHT||r. The matrix norm used here is
the Frobenius norm. With a slight modification of the above objective and use of the Kullback-Leibler
divergence instead of the Frobenius norm, NMF has been shown to be equivalent to Probabilistic Latent
Semantic Indexing (Ding et al., 2008), a forerunner of LDA.

In the recent literature, good results have been achieved using a combination of an L, and an L, reg-
ularizing term (Kim & Park, 2008b; Saha & Sindhwani, 2012). This encourages sparsity and somewhat
prevents overfitting. Our specific objective is given below:

1 n
JOW,H) = 2D = WHT I + WG + B 3 IH: I 3.1)

i=1

subject to the non-negative constraints on both W and H.

In this article we use an alternating least squares (ALS) active set method developed by Kim &
Park (2008a), using 300 topics. ALS methods alternate between minimizing ||[D — WH?||; (the sum
of element-wise squared error) over W and H matrices. In this particular case each regularizer term
contains only either W or H terms, so Kim and Park encode the regularizer terms into

= (§)-(F ] s [(8)-(2 )

They then employ the usual ALS procedure, alternating between minimizing J,(H) and J,(W).

Each of the K rows of H” may be interpreted as a topic vector and each entry of a given row as the
relative frequency with which a word occurs in the topic. By sorting the entries of the row we can form
ranked lists of words describing the topic. We show an example of this in Table 1. Each of the N rows
of W is the encoding of a document in the topic basis. Each entry of a given row of W is the proportion
of the document that is ‘taken’ from a given topic.

This topic model can efficiently handle streaming data or data that arrive in large batches over time.
Given the model parameters previously learned on current data, it is a simple matrix manipulation to
find the topic representation of new data as it comes in. The parameters can also be updated offline to
adapt to changes in the underlying structure due to the addition of new data.

4. Earthmover’s distance

In this section we first define the EMD and briefly discuss its motivation, important properties and
differences from other measures and metrics. We then discuss our usage of it and present results.
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TABLE 1 Examples of topic interpretations for select topics. On the left-hand
side the corresponding topic number is provided. As expected, numerous topics
have a running theme, e.g. Holidays, Events, Classes and Sports Teams. Others
seem to be dominated by a single word to which the others all relate. Topics
in boldface possibly exhibit spatial or temporal patterning, which the methods

presented here investigate rigorously.

Topic no. Topic words in descending order of frequency per topic
75 Song Sing Lyric Singing Hear
79 Hungry Bored Af Lazy Super
134 Citadel Outlets Shopping Commerce Others
136 Birthday Enjoy Happy Beautiful Cake
138 Years New Kiss Resolution Eve
154 California State University  Angeles Los
172 Class Math Ugh Spanish Full
184 Idk Might Yet Umm Bout
188 Cute Boyfriend Aww Together Aha
192 Win Lakers Straight Fan Clippers
231 Merry Christmas Xmas Yall Everybody
227 Okay Ahaha Ohh Aww Hahahaha
237 Commerce Old Store Factory Change
242 Tho Ahah Af Lame Serious
25 School High Middle Monday Excited
33 Stay Strong Kind Faithful Single
40 Wait Till Til Excited Train
62 Cool Sound Kinda Minute Reply
64 Stupid Acting Af - Act
113 Text Number Sent Message Reply
117 Good Sound Luck Feels Mood
143 Gotta Clean Fight Learn Dawg
147 Break Heart Winter Taking Fast
176 Food Mexican Bomb Chinese Ate
179 Face Sad Ugly Beautiful Punch
181 Take Nap Shower Breath Seriously
211 Asleep Fall Fell Falling Half
4.1. Definition of the EMD
Let P and Q be discrete distributions:
P={pi,wp),-.., [on,Wpn)} 4.1
0 ={(q1,wq1)s - - -, (qu, Wwom)}, (4.2)
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N M
pri =1 and qu,- =1 (4.3)
i=1 i=1

Let d(-,-) be a metric on the set {p;}_, U {g;}**, and let f; be the scalar flow from p; to g; with the
following constraints:

M N
f;‘j > 0, Zﬁj = Wpi, Z‘ﬁj = Wy;. (44)
Jj i

We define the EMD as

EMD(P, Q) = min } f; - d(p;, ), (4.5)
iy

as seen in Muskulus & Verduyn-Lunel (2011). More intuitively, if P and Q were piles of dirt, the EMD
measure would be similar to the minimum work required to move the pile P to the pile Q. For more
analytic results, the EMD is commonly extended to continuous event spaces; in this article we only use
the discrete version.

EMD is a metric on distributions defined over a metric space. The metric space condition is due to
the ground distance or flow property of EMD, a property which also separates it from other metrics such
as total variation.

4.2. Construction of histograms

Once each document in the corpus has been assigned a topic encoding, we recover a empirical distribution
in space and time for each topic. Here we only rigorously address a 1D histogram, but the process is
easily extended to higher dimensions.

Given an connected observational window L = [a, b] and a fixed number of bins B, we partition the
window into B subintervals of length # = “z¢. Each sub-interval is defined as ¢; = [a + h x j,a + h x
(j + 1)]. For a given corpus D with documents d;, topics Z, topic encodings c¢; . and positions #; € [a, b],
we define the distribution P, of a given topic z € Z as the following vector (histogram):

Zlielj Ci’z
Pi:= ~— -
! Zd,‘ Ci'z

This is readily interpreted as the binned distribution of Tweets in L, reweighed by their topic encodings
and normalized so that the bins sum to one. We also define the ‘uniform’ weighting of the Tweets, which
we refer to as the uniform histogram; note that this is not a uniform distribution over space or time but
is the binned background rate of all Tweets (uniformly weighted).

Because the number of bins increases exponentially with the dimension of the ground distance,
common algorithms for computing the exact solution to EMD scale badly. To avoid this cost, we use
an approximation to the EMD originally formulated by Shirdhonkar & Jacobs (2008), which relies on
the wavelet transform. This takes the computation from approximately O(n*) to O(n), where n is the
number of bins.

(4.6)
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Earthmover distances across topics

0 50 100 150 200 250 300
Topics (ordered by EMD)

FiG. 1. EMDs for each temporal histogram.

4.3. Application to twitter timeseries

In the context of Twitter data, we construct topic timeseries histograms by binning the topic weighted
posting times and measuring the distance to the uniform histogram. This distance is interpreted as a
measure of each particular topics’ temporal clustering, given the background (overall) rate of Tweeting.
Ranking the results in descending order of distance, we show the range of distances in Fig. 1 and, in
Figs. 2 and 3, a qualitative analysis of the ‘furthest’ four topics. We also include an analysis of the topic
‘closest’ to uniform for reference. Note that here we present only the results from December, though
similar results have been generated for other months.

Figure 1 shows a small subset of topics on the left are considerably further from the uniform weighting
than most other topics. Topics explored in depth (in Figs. 2 and 3) are the four leftmost points and the
right most point on this plot. There is a clear change point in this plot on the left-hand side. While it is
difficult to test the true cause leading to such as shape, we conjecture that the left-hand group of topics
have some temporal linkage leading to more extreme EMD values and variation, while the majority of
topics to the right of the change point do not have such a linkage.

4.4. Application to twitter GPS data

Keeping the timeseries histograms in mind, we would also like to know the topics with geographic
histograms ‘far’ from the uniform histogram in space seen in Figure 2. Using the EMD, we can measure
the distance from each topic’s histogram to the uniform histogram seen in Figure 3. Ranking the results
in descending order of distance, we show in Figs. 4 and 5 the results and, again, a short analysis of the
four ‘furthest’ topic histograms, as well as a ‘close’ histogram for reference.

It is interesting to note that, in the geographic case, several topics are extremely far from the uniform
distribution. As explored in the qualitative analysis, this may be attributed to user proclivity to Tweet
certain things from only certain specific locations (e.g. local landmarks or the users’ places of residence).
The three furthest histograms (Topics 194, 80 and 166) have uni- or bi-modal distributions with very
little spread. The fourth, however, is of particular interest due to its multi-modal nature and irregular
shape. On the other end of the spectrum, we see that the closest to uniform topic includes words that
could be used by all Twitter users. Several points on the far left of Fig. 2 the plot show extreme spatial
localization. The topics explored in depth (in Figs. 4 and 5) are again the four leftmost points and the
right most point on this plot.
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Topic 121, Distance: 158.5699
Top words:

Temporal distribution of Topic 121

e
i

1
|
0.05 gy Y T 156'3' J‘Ihu. |

Weighted Distribution Density

Time (hours)

B =

5.

merry

. christmas
. christmas[symbol]
. mount

washington

Analysis: This topic encompasses Tweets about
Christmas and posts about Mount Washington,
which is both a local subdivision as well as a park
with coinciding names. The location name is gener-
ated by Instagram.

Topic 80, Distance: 143.2101
Top words:

Temporal distribution of Topic 80

o
n

Weighted Distribution Density

o
&2

5
Time (hours)

1.
2.
3.

rawr
0
kill

4. jurassic

5.

dinosaur

Analysis: This topic is quite mysterious without
user data but upon inspection appears to be a group
of friends who use the word ‘rawr’, perhaps due to
the Jurassic park movie. Their usage of the word is
quite sparse.

Topic 63, Distance: 127.8254
Top words:

0.06 Temporal distribution of Topic 63

e
(=]
B

e
o
)

Weighted Distribution Density

0.00§ JLWM _LAML‘LLMQSLLLJJML

50
Time (hours)

1.
2.
3.
4.

5

1183
unknown
injury
collision
traffic

Analysis: This topic encompasses posts by the Cal-
ifornia Highway Patrol, specifically for CHP code
1183 (Accident, no details). The pattern exhibited
is consistent with weather patterns in Los Angeles,
with the exception Christmas eve, which received
heavy rain but low posting volume, implying a
lower number of accidents.

FiG. 2. Display of three of the ‘furthest’ topic temporal histograms from the Uniform weighting using the EMD On the right of

each section an interpretation of the topic is provided.
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Topic 283, Distance: 118.9802

0.04 remporal distribution of Topic 283

Weighted Distribution Density

500
Time (hours)

Top words:
1182
injury
collision
traffic

5. vs
Analysis: This topic encompasses posts by the
California Highway Patrol as well, specifically for
incidents with CHP code 1182 (accident, property
damage). It is parallel to the previous topic (63).

Bl e

Topic 179, Distance: 2.6742

0.010 Temporal distribution of Topic 179

Weighted Distribution Density
o
o
=1
w

il

500
Time (hours)

Top words:

1. got

2. present

3. [explicative]

4. card

5. nobody
Analysis: This topic is the closest to the uniform
histogram. It somewhat describes the possible pur-
chase of gifts and cards, with the mysterious inclu-
sion of an explicative verb in past tense. This
reflects the usage of ‘got [explicative] .

Uniformly Weighted Temporal Distribution of Tweets

0.006, Uniformly weighted temporal distribution

0.004

0.002(§

——
——

Weighted Distribution Density

|| |
M | mﬂl‘l '{ ”IH H .LH | *V “ |

|||1l

0.000

Time Ihours]

FiG.3. Display of a ‘far’ distribution, the ‘closest’ distribution, as well as the uniform distribution (i.e. the zero-distance

We here display the uniformly weighted distribu-
tion of Tweets. There are clear cyclic patterns (on
a24-h scale, as well as possibly a weekly scale).
Topic weight distributions that are relatively close to
this distribution (as measured by the EMD)
we interpret as being comparatively more
uniform over time and thus less specific to particu-
lar events.

distribution), from top to bottom, respectively. On the right of each section an interpretation of the topic is provided.
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Spatial heatmap of topic 194

34.10]

34.05}

|
-0.08-0.06-0.04-0.02

34.00t

Spatial heatmap of topic 80

34.10|

34.05}

34.00t

—0.08-0.06-0.04-0.02

Spatial heatmap of topic 166

34.10}

34.05}

34.00t

FIG. 4. We here display three of the ‘furthest’ topic spatial histograms from the Uniform weighting using the EMD. On the right

Topic 194, Distance: 9.1704

0.48
0.42
0.36
0.30
0.24
0.18
0.12
0.06
0.00

Top words:
citadel
outlets
commerce
shopping
others

Nk =

Analysis: This topic appears to encompass Tweets
from Citadel Outlet Malls, a shopping centre in
Commerce, CA (a subdivision of Los Angeles).

Topic 80, Distance: 6.6391

0.54
0.48
0.42
0.36
0.30
0.24
0.18
0.12
0.06
0.00

Top words:

. rawr
0

kill

. jurassic

. dinosaur

Do =

Analysis: This topic is quite mysterious without
user data but upon inspection appears to be a group
of friends who use the word ‘rawr’, perhaps due to
the Jurassic park movie.

Topic 166, Distance: 5.9912

0.64
0.56
0.48
0.40
0.32
0.24
0.16
0.08
0.00

Top words:
ty

gbu

jc
wanted
. loving

bl e

Analysis: This topic also requires user data to inter-
pret but upon inspection appears to be one man.
He often uses the abbreviations ‘ty’, ‘gbu’ and ‘jc’.
The active region appears to be his place of resi-
dence.

419

of each section we provide an interpretation of the topic. The axes are longitude and latitude coordinates (the x-axis is relative to

118° W).

9T0Z ‘Gg J2go100 o :: e /Bio'sfeuinolploxo-rewew//:dny wolj pepeojumoq


http://imamat.oxfordjournals.org/

420 E.L.LAIETAL.

Topic 158, Distance: 3.7809

Spatial heatmﬁp of topic 158 0.00 '
34.10 | Wo.os ;  / 8 o
0.07 e ) :
] 0
0.06 “' £
0.05 w
34.05/ . g { [Ho.0a 4
l il Arre ” 5
2 | [f{o-03 ”w'
0.02 v 9 "
0.01 el L
| “whrabu,, ANgeies .,
34.00 ) |
—0.08-0.06-0.04-0.02 %0 > q
Top words:
1. tracking Analysis:
2. graffiti This topic describes Tweets by a graffiti tracking service hired by the LA Metro
3. station Link. On the right hand side are the locations of the Metro Link stations in the
4. plaza area, which correspond with active regions. ‘Mariachi’ is one of the stations.
5. mariachi

Topic 208, Distance: (0.2838

Top words:
Spatial heatmap of topic 208 1. check
0.024 2. dm
34.10 ’ 3. welcome
| o021 4. em
| Mo.o18 5. --
[ Mo.015
30050 [ Mo.o12 A.nalySIS: This .toplc is the closest to the umforrp
o : o histogram and is provided for reference. ‘dm’ is
E e ’ an abbreviation for Direct Message.
0.006
0.003
34.00
~0.08-0.06-0.04-0,02 0-000

FiG. 5. Display of one ‘far’ topic spatial histograms and one ‘close’ topic spatial histogram, as measured by the EMD from the
Uniform weighting. An interpretation of the topic is provided. The axes are longitude and latitude coordinates (the x-axis is relative
to 118° W).

5. Point process models

In this section we construct the necessary definitions for our second method, providing brief discussion
of their motivation and our specific usage. Results from this method are provided in Section 6.

5.1. Hawkes process model

A point process N is a random process where any realization consists of a collection of points typically
representing the times and locations of events. The most basic of these processes is the stationary Poisson
process in which events occur independently at a constant rate over an observed space-time window.
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Earthmover distances across topics

0.07

EMD

50 100 150 200 250 300
Topics (ordered by EMD)

FiG. 6. EMDs for each spatial histogram.

Spatial heatmap of tweets
N ' 0.027

34.10 0.024
0.021
0.018
0.015
34.05/W 10.012
. 10.009

] 10.006
10.003
—0.000

34.00

~0.08-0.06—0.04—0.02

—1.1814e2

FiG. 7. The uniform histogram for geographic space.

Poisson point processes are characterized uniquely by their associated conditional rate A, which is defined
as the limited expected rate of the accumulation of points around a particular location and time (Daley
& Vere-Jones, 2003).

In this work we focus on self-exciting point processes which describe sequences of events where the
occurrence of one event increases the likelihood that another event occurs nearby in space and time. The
Hawkes process (Hawkes, 1971) is one of the most important models of the conditional intensity for
self-exciting point processes. This model was first applied to modelling earthquake occurrences through
separate kernels for the background (mainshock) and triggering (aftershock) intensities. More recent
applications include modelling spatial temporal crime rates (Mohler et al., 2011), retaliatory acts of
violence on a gang network (Stomakhin et al., 2011) and e-mail traffic on a social network (Fox e al.,
2014).

For a sequence of Tweets of topic k, we model their associated time series {rf : i = 1,...,m;} as a
Hawkes process with an exponential triggering function. The conditional intensity function A, (¢) for
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the rate at which Tweets occur in topic k is defined as:

M) = g+ o Y ek, (5.1)
flk<t

Here p, is the background rate for topic k, which can be interpreted as the occurrence rate of Tweets in
topic k which are not triggered by other Tweets in topic k. The parameter « is the branching ratio of the
process, which in context is the expected number of Tweets in topic k triggered by an arbitrary Tweet
in topic k. The parameter w; governs the rate of decay, i.e. how quickly the overall rate A, returns to its
background level p, after a Tweet occurs in topic k.

The exponential kernel was chosen because our topics come from a relatively short time interval.
Sornette & Helmstetter (2003) suggest that for short time-scale topics the triggering kernel should obey
an exponential decay function: g(f) = we ™~

In our analysis of the 1D Hawkes model, we mainly focus on the estimated branching ratio o since
this parameter directly measures the amount self-excitation in the process and may be used to identify
those topics where Tweets are highly clustered in time. We also compared the stationary temporal
Poisson process with the exponential Hawkes process where the conditional intensity function of the
former model is a constant.

5.2. Marked spatio-temporal model

The Hawkes process can be further extended to include both temporal and spatial information. Such a
space-time process N (¢, x, y) is characterized via its conditional intensity A (¢, x, y). For a sequence of N
Tweets, we consider their sequence coordinates in space and time (xy, yi,#), ..., (Xy, Yy, y) as such a
process.

Point processes may also carry additional information beyond their location; these data are known as
marks, and the corresponding processes are known as marked point processes. Here we carry the topic
information as a mark, using notation similar to Mohler (2014), where the marks are used to denote
different categories of crimes.

We consider the set of topics M believed to be precursory of one specific topic. For example, if we
focus on the topic with descriptors ‘lakers game’, we consider topics that may be potential precursors
(‘watch TV game’, ‘clippers lakers’). The topic label of a specific Tweet is indexed z; € {0, 1}; z; =1
if Tweet i is in topic j. The intensity of the topic specific process is now:

Mt x,y) = w(6,y) + )Y g =X,y — yit — 1, 23). (5.2)

ti<t jeM

We use a triggering kernel which is specified as exponential in time and Gaussian in space:

1 x2 +y2
g(x, v, t,2;) = zijwi;x exp (—wyt) 27”7,3 exp | — 20,3 5.3)

and a background rate estimated from all Tweets in the M topics:

2 2

Vi X4y
, :§ § G - ) 5.4
px.Y) Z’znTnf exP( 2n? ) 4

t>t; jeM
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In our model of the intensity function A.(#,x,y) for topic k, 6; is the expected number of Tweets
in topic k triggered by an arbitrary Tweet in topic j; this is the main parameter characterizing the cross
excitation rates between topics. Parameter o} is the standard deviation in distance among triggered
Tweets, reflecting the spatial clustering of the topic. Parameter yj. gives the contribution of an event in
a given topic j to topic k’s background rate, w; is again the decay timescale and 7y is a background rate
scaling parameter. 7 is the length of the observational window. The choice of these Gaussian functions in
space allow for the derivation of the maximization step in the expectation-maximization (EM) algorithm
for parameter estimation.

5.3. Pre-processing and estimation

In order to separate our Tweets by topic and to generate marks for our point processes, for topic encoding
matrix W we normalize each row of the matrix. W;; then represents the proportion of Tweet i consisting
of topic j. We then threshold this matrix at a value of t = 0.1 and take any non-zero values as binary
labels indicating membership in a topic. Note that some Tweets are effectively removed from our dataset
as they have no assigned label. To estimate parameters, we use maximum-likelihood estimation via the
EM algorithm of Veen & Schoenberg (2008).

5.4. Extensions

There are many natural extensions of our model that can be adapted to handle a variety of problems in
future work. The topic model can be extended to a weighted semi-supervised model by applying Lee
et al. (2010) for classification tasks, user specified topics or to weight rare topic classes. To deal with
rare events, Vilalta & Ma (2002) and Weiss & Hirsh (2000) can be used as a predictive model across
both rare and common time series patterns or to search for rare events.

6. Results and analysis

In this section, we present the results and analysis of the estimated Hawkes process models of the
Twitter topics. We assess the goodness-of-fit of the models to the Twitter data with the Akaike information
criterion (AIC) and non-parametric methods like the Kolmogorov—Smirnov (KS) test for the transformed
times. We also interpret estimated parameters in the context of their respective topics.

6.1. Temporal Hawkes model
The AIC (Akaike, 1974) is defined as

AIC = 2p — 21(£2),

where p is the number of parameters of the model and / (£2) is the maximum value of the log-likelihood
function. AIC is a simple model selection criterion that encourages goodness-of-fit for a model (as given
by likelihood) while penalizing the number of parameters, which serves as a measure of complexity. A
smaller AIC value implies the model is a better fit.

As an initial validation of our model, we compute AIC scores for both a stationary Poisson model
and a Hawkes model. Note, the intensity function for the stationary Poisson model is given by the
constant rate A,(r) = u; for each topic k. Unlike AIC calculations for most models, AIC for point
processes may be negative (Lewis et al., 2012); the smaller (more negative) score denotes the preferred
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FiG. 8. AIC values for the Poisson and Hawkes models for each topic (labelled 1-300).

TABLE 2 Number of parameters (p), maximum log-
likelihood values (I(Q)) and AIC values (2p —
21(82)) for the temporal Hawkes and stationary
Poisson models.

0 1(£2) AIC

Stationary Poisson 300 1943839 —388167.8
Temporal Hawkes 900 2144832 —427166.3

model. Since the Hawkes model has more parameters than the Poisson model yet reduces to the latter
in the case that any of the triggering parameters are zero, by calculating the AIC scores for each we can
measure the amount to which a self-exciting model better fits the data. In every case for every topic the
Hawkes model has a better AIC score (Fig. 8), though the margin varies by the amount to which a topic
clusters. The AIC values are relative, but their overall magnitudes scale with the size of the data. While
comparisons remain valid, the difference in the scores themselves will scale inversely with the size of
the data. The maximum log-likelihood and AIC scores for the temporal Hawkes and stationary Poisson
models summed over all 300 topics are presented in Table 2. This table shows that the Hawkes model
performs significantly better than stationary Poisson over all Twitter topics according to the AIC.

Another goodness-of-fit diagnostic considered in Ogata (1988) is the transformed time {t}, which
may be defined for each topic k as

&
ﬁ:/xmma 6.1)
0

If the conditional intensity is the true model used to generate the data then the transformed times follow
a stationary Poisson process with rate 1 (Meyer, 1971). Hence, the inter-event times t} — 7}, follow an
exponential distribution, and consequently Uf = 1 — exp{—(z}' — )} follows a uniform distribution
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TABLE 3 Estimated parameters and KS test p values for the temporal Hawkes
model for some select topics.

No. Top words i & @ !(day) p value

1 ‘ca’ ‘angeles’ ‘commerce’ ‘alham- 18.97 1.60 0.053 3.8e-10
bra’ ‘monterey’ ‘jack’

46  ‘white’ ‘center’ ‘medical’ ‘memo- 8.25 0.13 0.00002 0.25
rial’ ‘lab’ ‘clinical’

98 ‘cold” “‘af” ‘outside’ ‘warm’ 7.88 0.60 0.059 0.88
‘weather’

251 ‘game’ ‘clipper’ ‘laker’ ‘basketball’ 4.99 0.65 0.0567 0.83
‘fan’ ‘video’

294 ‘@’ ‘photo’ ‘posted’ ‘hq’ ‘pic’ 8.65 0.90 0.040 0.97
‘bridge’

96  ‘chico’ ‘fluffice’ ‘ice’ ‘rt’ ‘sexy’ 9.10 0.19 0.002 0.16
‘fan’

12 ‘new’ ‘york’ ‘berrics’ ‘year’ ‘eve’ 9.25 0.81 0.0213 0.034
‘twitcon’

234  ‘rawr’ ‘dinosaur’ ‘jurassic’ ‘seen’” 0.55 0.36 4.15 0.78
‘park’

—  All twitter data 6.29 0.99 0.0065 5.le—21

over [0, 1). Any deviation of {U*} from the uniform distribution corresponds to some feature in the data
which is not well captured by the estimated model.

In Table 3 we present the p values from the Kolmogorov—Smirnov test comparing {U*} to the uniform
distribution for some select topics k. A large p value (e.g.>0.05) indicates that the Hawkes model is well
fit to the data, while a small p value (e.g. <0.05) indicates some feature of the data which is not well
captured by the estimated model. Topics such as ‘cold af outside’ and ‘@ photo posted’ appear to fit well
since the corresponding p values are greater than 0.05. Intuitively, we expect topics about the weather
or posting photos to generate Tweets that are temporally clustered and thus fit well to the self-exciting
model. In a few exemplar cases, the Hawkes model is less valid; e.g., the ‘ca angeles commerce’ and
‘new york berrics’ topics have small p values. For these topics we may be modelling noise or Tweets
that generally do not cluster or possess self-exciting characteristics.

The last row of Table 3 shows the result of fitting the Hawkes model to the entire Twitter dataset (not
conditioned on topics). The small p value indicates that a simple Hawkes model with three parameters
cannot capture all the complexities in the entire dataset. Indeed, by classifying Tweets into their respective
topics the Hawkes model is better fit and more adequately captures the temporal clustering in the data.

Lastly, Fig. 9 reveals that the p values for the Hawkes model are generally much larger than stationary
Poisson for each topic. Moreover, 95.3% of the p values for the Hawkes models are greater than 0.05,
indicating that this model is a good fit for most topics (in comparison, only 6.3% of the p values for the
Poisson models are greater than 0.05).

Note that Figs. 8 and 9 show a much more substantial difference between the fitted Hawkes and
Poisson models in terms of KS p values than AIC scores. However, this is perhaps not surprising
since the AIC and KS test for the transformed times are two entirely different diagnostics: AIC is a
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F1G.9. KS test p values for the Poisson model and Hawkes model (dotted line) for each topic (labelled 1-300).

likelihood-based statistic used to compare nested models of varying complexity, while the KS p values
are used to test whether the distribution of the transformed times deviates significantly from a uniform
distribution. The two diagnostics also both indicate that the self-exciting model is a better fit to the data.
Moreover, the results for the KS test suggest that there is a lot of clustering in the temporal point process
data that is not being accounted for by the stationary Poisson model.

6.2. Strongly branching topics

Table 3 lists the estimated parameters of the Hawkes process models for some select topics. The &
branching ratio, equal to the estimated mean number of Tweets triggered per Tweet, is of particular
interest. For instance, the ‘@ photo posted’ topic is highly clustered in time since for every 100 tweets
sent in this topic the estimated mean number of triggered Tweets is 90, and it takes on average 57 min
for a Tweet in this topic to trigger another Tweet. Similarly, tweets in topics about the weather (‘cold
af outside’) or sports (‘game clipper laker’) have strong estimated branching ratios and quick estimated
average triggering times. By comparison, the topics ‘white center medical’ and ‘rawr dinosaur jurrasic’
have much weaker branching ratios.

6.3. The response time of topics

™! represents the expected amount of time for a Tweet about one topic to trigger another Tweet of
the same topic. Ranking ™! reveals topics with quick response times. For example, topic 96 is about
fluff ice in East LA. This topic gives rise to immediate responses, since many individuals are familiar
with this topic. Table 3 shows that there can be an order of magnitude difference in the decay rates for
different topics. For instance, the expected response time for topic 234 about Jurassic Park is 4.15 days,
while the expected response time for topic 251 about basketball is about 1.36 hours. This substantial
difference in response times may correspond to the popularity of these topics, since a tweet about a
current Lakers game is more likely generate quick responses than one about Jurassic Park.
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6.4. Marked spatio-temporal Hawkes model

We again directly interpret the parameters of the Hawkes model fit to the data. As described in Section
5, o shows the degree to which a topic clusters. We can, as in Section 4, directly rank these coefficients
and investigate the extrema topics; e.g., the most spatially clustered topic is ‘citadel outlets commerce’
with o = 0.0006 (which agrees with our results in Section 4) while the least spatial clustered topic with
o = 0.0014 is ‘favorite seriously sad’.

Also described in the previous section is the parameter 6;;, which, for each intensity function
Ag(2,x,y), is the amount to which topic j triggers Tweets in topic k. Investigating 6, is equivalent
to investigating the self-excitation rate (this is similar to the parameter « in the 1D unmarked case). We
again show only a few exemplar cases, as there are too many interactions to present (K2 for K topics).

*  M={Topic 123 (‘end-of-world 2012"), Topic 113 (‘happy sad’)},

0 Jj=(23) | j=(113)
k=123 0.13 0.00
k=113 0.19 0.97

First, it is quite interesting to note the extremely high rate of self-excitation in the ‘happy sad’ topic.
Second, discussion of the purported end of the world is a precursor to Tweets discussing ‘happy sad’.

*  M={Topic 127 (‘traffic 1a’), Topic 82 (‘food traffic’)},

6 |j=027)]j=®82)
k=127 0.78 0.48
k=82 0.00 0.08

semantically a subset of the topic of traffic as a whole.

Los Angeles traffic is, unsurprisingly, a self-exciting topic, but the discussion of food and traffic is a
strong precursor to a simple discussion of traffic. This may be due to the topic of food and traffic being

M={Topic 193 (‘game clipper laker’), Topic 90 (‘laker watching tv’)},

O | J=90) | j=(193)
k=90 0.72 0.81
k=193 0.00 1.95

First, note the extreme excitation rates of both topics; these are clearly well-clustered topics
temporally. Discussion of the Lakers game informs on possible discussion of a Lakers—Clippers game.

Finally, we can investigate these interactions on a wider scale. We present a small example situation of
four topics about the Lakers or related games, two topics about holidays and four topics about basketball
in general. The resulting excitation coefficients are presented in Fig. 10, where darker means a stronger
coefficient.

The results show that one type of holiday conversation is a strong precursor to discussion of basketball
in almost every topic studied, but, appropriately, basketball does not provoke much conversation about
the holidays.
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F1G. 10. ) for topics 1 to 10, M = 1,2, ..., 10. In order from left to right, the first four topics contain content about the Lakers,
the next two contain holiday related content (in this case Christmas and New Years) and the next four contain content about
basketball. Here, the column index denotes the ‘preceeding’ topic and the row index denotes the ‘succeeding’ topic. Darker cells
indicate stronger coefficients.

7. Conclusions and discussion

In this article, we propose two methods for the analysis of generic topic models on corpora of text with
spatio-temporal information. The first applies the EMD to topic histograms in order to discover topics that
have abnormal structure in comparison with the background rate. The second measures clustering by self-
excitation and then is extended to measure cross-excitation rates. We present results of both methods on
a Twitter data set collected from East Los Angeles over a 10-month span, demonstrating their viability
and usefulness. In particular, the first method immediately selects temporally and spatially clustered
topics, where the clusters do not have a particular shape or distribution. The second method successfully
recovers hidden interactions between topics which provides deeper insight into the underlying temporal
and spatial structure of the data.
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