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Abstract
Objectives  Research has established that offenders are often generalists who commit a wide 
range of criminal offense types. Theoretical approaches to offending variety generally take 
a longitudinal perspective that tracks the variety of crimes committed over the life-course. 
Less theoretical work has been done at the microscopic scale of daily routines, though this 
is the scale at which individuals ultimately encounter and exploit criminal opportunities.
Methods  This paper develops a neutral model that links fine-grained offender mobility pat-
terns in heterogeneous crime environments to offending variety. Offender mobility is mod-
eled as Brownian motion originating from central anchor point. Crime opportunities are 
exploited upon encounter in a simple random fashion.
Results  The model shows mechanistically how offenders with higher mobility and/or envi-
ronments with greater spatial overlap in distinct crime opportunities can display greater 
offending variety.
Conclusions  The model provides a neutral baseline for evaluating the relationship between 
day-to-day mobility, crime environments, and offending variety. The relationship displays 
distinctive mathematical regularities that can serve as a foundation for further theoretical 
development.

Keywords  Behavioral ecology · Crime · Mobility · Environmental psychology · 
Brownian motion · Random walk
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Introduction

Crime is often viewed through the lens of either offenders or the events themselves (Brant-
ingham and Brantingham 1984; Sacco and Kennedy 2002; Wortley 2010). This partitioning 
is also true of attempts to study how crimes of different types co-occur. The range of crime 
types favored by an offender is referred to as their “offending variety” (Farrington 1973; 
Monahan and Piquero 2009; Sweeten 2012). While it was long thought that offenders might 
specialize in certain types of crime, it now appears that offenders are more commonly gen-
eralists willing to commit a wide array of crime types given the opportunity (Mazerolle et 
al. 2000; McGloin et al. 2009). Moreover, offending variety appears to change over the life-
course, reflecting how individual preferences and opportunities to engage in crime shift both 
with age and social and environmental contexts (Gottfredson and Hirschi 1990; McGloin 
and Piquero 2010; Moffitt 1994). In general, observing an offender for a longer period will 
tend to reveal greater offending variety (McGloin et al. 2009, 2011; Piquero et al. 2010).

At the event level, the range of crime types found in a particular place, such as a neigh-
borhood, might be referred to as “crime diversity” (Brantingham 2016; Lentz 2018; Quick 
et al. 2018). Crime diversity may be related to the opportunity characteristic of a particular 
place (Brantingham and Brantingham 1978; Mayhew et al. 1976), though the preferences of 
offenders may also matter (Bernasco and Block 2009; Townsley et al. 2015). Theory sug-
gests that environmental cues favorable to crime can be crime general or crime specific, sig-
naling respectively the appropriateness of multiple or singular crime types for that setting. 
In either case, larger areas are expected to host more cues and thus present greater crime 
diversity (Brantingham 2016; Khorshidi et al. 2021).

Given the conceptual similarity of offending variety and crime diversity as measures 
of crime it is a wonder that there have been few attempts to formally connect them (but 
see Song et al. 2019; Thomas et al. 2022). Certainly, the units of observation are very dif-
ferent—individual offenders vs geographic areas—and the theoretical traditions animating 
their investigation quite separate—life-course vs. environmental criminology. However, it 
must be the case that offending variety and crime diversity are connected to one another. 
After all, a criminal career is assembled through a sequence of events in which offenders 
search for, encounter, and exploit criminal opportunities in their environments. Similarly, 
the crime pattern in a particular place is ultimately a trace of the criminal repertoires of the 
offenders who committed crimes there. The present paper focuses on the first of these prob-
lems by developing an agent-based model where individual offending variety arises from 
mobility-driven encounters with crime opportunities distributed across a spatially explicit 
environment. The second problem, the generation of place-based crime diversity by forag-
ing offenders, will be addressed in future work.

Our conceptual starting point for modeling mobility-driven offending variety can be 
traced to routine activities theory, crime pattern theory and the study of journey-to-crime 
distributions. Crime pattern theory focuses the key activity nodes and paths that make up 
offender (and non-offender) daily routines (Brantingham and Brantingham 1993). Mobility 
is what makes crime pattern theory a dynamic theory of offender behavior. Specifically, the 
repetitive nature of routine movement around and between activity nodes is thought to build 
awareness of available crime opportunities (Brantingham and Brantingham 1978). Whether 
those opportunities are exploited upon first encounter or later, mobility is the proximate 
mechanisms bringing offenders and targets together in space and time to trigger a crime 
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(Felson 2002). Journey-to-crime distributions, which plot the distances between crime loca-
tions and a key anchor point (usually home) across offenders, reveal certain regular features 
of offender routine mobility (Michaud 2023; Rengert 2004; but see Townsley and Sidebot-
tom 2010; Van Koppen and De Keijser 1997). Most offenses are committed close to an 
offender’s activity node with declining frequencies at greater distances. Some argue also 
for a buffer region immediately adjacent to the activity node where offending frequency is 
reduced (Rossmo and Wheeler 2024). A range of non-criminal factors may also influence 
routine mobility and journey-to-crime patterns including the structure of the physical and 
social environment (Kim and Hipp 2020; Summers and Johnson 2017) and the distribution 
of social, organizational, and institutional resources (Browning et al. 2022; Cai et al. 2024; 
Valasik et al. 2023).

Given this theoretical framework, prior studies point to at least two potential ways in 
which day-to-day mobility could drive offending variety (Bernasco and Nieuwbeerta 2005; 
Elffers 2004; Vandeviver et al. 2015), although with different implications for the role that 
target preference plays. Consistent with routine activities and crime pattern theory, offend-
ing variety might be seen simply as a byproduct of mobility. In this scenario, a more mobile 
offender may display greater offending variety if it generates to larger awareness space (in 
physical terms) and larger areas include a greater array of crime opportunity types (Brant-
ingham 2016; Lentz 2018). Consistent with rational choice theories, we expect the generalist 
offender to be able to take full advantage of the larger awareness space generated by greater 
mobility. However, specialist offenders may not benefit as widely and instead choose to 
travel further for particularly attractive targets. This implies that increased mobility may not 
translate into greater offending variety for at least some offenders. Here we imagine a sim-
plified model in which a mobile generalist offender engages in repeated excursions from a 
single, centralized anchor point. During these excursions, the offender randomly encounters 
and exploits static (non-depleting) crime opportunities. The question of interest concerns 
how offending variety—the number of unique crime opportunity types exploited—varies 
as a function of the mobility strategy, opportunity type preferences, and the spatial arrange-
ment of crime opportunity types in the environment.

It is important to note that our approach is somewhat more abstract and formal than other 
examples of agent-based modeling in criminology (see Birks et al. 2025; Gerritsen and 
Elffers 2020). The model is best thought of as a neutral model (Gotelli and Graves 1996). 
It appeals to a minimum set of mechanisms necessary model the problem at hand and then 
assumes that these mechanisms operate with as few ad hoc assumptions as possible, which 
generally means that the mechanisms intentionally follow stochastically neutral rules. Influ-
ential neutral models in ecology, for example, start by assuming that all species have the 
exact same birth, death, immigration and emigration rates, and then proceed to simulate 
(and derive) major ecological patterns such as species-area relationships or species extinc-
tion rates using the rules of probability (Hubbell 2001; Morrow 2024). Similar neutral mod-
els lie at the heart of the contemporary study of molecular evolution (Galtier 2024; Kimura 
1983). The agent-based model developed here is neutral in two important ways. First, the 
model envisions an offender who undertakes repeated excursions from a single anchor point 
or node according to Brownian motion. It offers a simplified vision of “the geometry of 
crime” consisting of just one node and thus no directed paths between nodes (Brantingham 
and Brantingham 1993). Brownian motion is a neutral mobility strategy in the sense that the 
direction and distance of each incremental move is a statistically independent event, while 
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the position of the process in space at the next instant is dependent only upon the current 
position (i.e., it is a Markov process). Thus, modeling offender mobility as Brownian motion 
is equivalent to assuming that movement occurs without planning or any specific goal in 
mind (e.g., to encounter a particular criminal opportunity). Second, the offender exploits 
criminal opportunities in a simple random fashion. If more than one criminal opportunity is 
encountered, then just one of them is exploited without regard to the opportunity type. This 
model of target selection is neutral in the sense that the offender does not exercise any target 
type preference. Rather, we simply expect abundant opportunity types to be exploited with 
higher probability than rare opportunity types.

Such a simple, abstract model is clearly not aimed at replicating empirical reality. A lack 
of realism, however, does not mean that a model cannot be useful (Morrow 2024). Here we 
leverage model simplicity to hopefully bring clarity to the problem of how baseline mobil-
ity processes can interact with heterogeneous crime environments to generate offending 
variety. Our purpose is to identify possible law-like regularities and express these in formal 
mathematical terms.

Model

Consider an environment consisting of crime opportunities and a single mobile offender. 
The i = 1, 2, …, N crime opportunities are drawn from k = 1, 2, …, M unique crime oppor-
tunity types. Each opportunity i of type k is tied to a point location xik, yik in continuous 
space. We leave unspecified exactly what crime opportunity types are modeled but have in 
mind that each type is defined by situational conditions, not just the criminal code classifi-
cation (see Clarke 1995). For example, a convenience store stickup and one highschooler 
strong-arming another for their cell phone are both robberies but they are ecologically dis-
tinct events that arise in very distinct settings (Haberman et al. 2022; Kuang et al. 2017). 
There is no prohibition against two or more unique opportunity types occupying the same 
location. For example, a dealer at a local street corner represents an opportunity to buy drugs 
but also an opportunity to rob him of his drugs or cash (Jacobs 2017). Thus, it is possible to 
say that each unique opportunity is tied to a singular location, but also that a single unique 
location may be tied to any number of unique crime opportunity types (including none). 
As a practical matter, a location that supports more than one unique crime opportunity type 
may be thought of as presenting crime-general cues (Brantingham 2016; Brantingham and 
Brantingham 1978), the degree of generality dependent upon the number of discrete oppor-
tunity types found there. Occasionally, we use the notation Nk to denote the number of 
opportunities that are of type k.

The opportunity types do not change on the time scales of importance to offender deci-
sion making. In other words, the situational cues present in a place are assumed to be static 
and stationary. For example, a residential burglary opportunity is tied the unique features of 
a house that remain largely the same from day to day (Vandeviver and Bernasco 2020). A 
strong-arm robbery opportunity on a key pathway home from school does not vary percep-
tibly because the setting attracts suitable victims daily (i.e., the opportunity does not move 
with victims) (Hatten and Piza 2022).

To characterize the crime environment further we need to model how crime opportuni-
ties are spatially structured, both within and between crime opportunity types. In theory, 
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there are MN  different ways in which M unique opportunity types can be allocated (inde-
pendently) across N spatially non-overlapping opportunities locations. If unique opportu-
nity types co-occur in the same location, then this number could be considerably smaller. 
Nevertheless, even before we consider the specifics of space, the potential variability in 
crime opportunity structures is vast; in the extreme case, for example, with just N = 10 
non-overlapping crime opportunity locations and M = 4 unique opportunity types, there 
are 10,000 potentially unique opportunity structures. For a one-dimensional environment, 
the lists [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 2, 2, 2, 3, 3, 4, 4] are but two of the 10,000 
possible structures.

The ways in which opportunities might be distributed across space add to the complexity. 
We consider four cases to help illuminate some of the potential processes at play. In the sim-
plest case, crime opportunities are distributed randomly with opportunity types allocated inde-
pendently (see Brantingham 2016). The random case is unrealistic but theoretically interesting 
as an example of a counterfactual world wherein there is no concentration of crime opportu-
nity types (Weisburd 2015). More complex (and realistic) situations occur where opportuni-
ties are clustered by type to form resource patches (Naveh and Lieberman 2013). Unique 
crime opportunity types may be more or less concentrated within patches, while patches may 
also be differentially concentrated across the environment (Ludwig and Tongway 1995).

Figure 1 illustrates one random crime environment, two regularly clustered crime environ-
ments and one patch-concentrated crime environment, all residing in an abstract two-dimen-
sional space where all distance measures are all in arbitrary units. The space is technically 
infinite, meaning that we do not need to worry about spatial boundary conditions. We focus 
our attention a square region in the center of the environment that is roughly 80 × 80 units 
in size, large enough to contain all the dynamics of interest. In this local region, there are 
around M = 80 unique crime opportunity types. In Fig. 1A, 1 and 1 each opportunity type 
is represented by around Nk = 50 locations. In Fig.  1D, the number of opportunities is 
exponentially distributed across types (see below). In all cases, the total number of crime 
opportunities in the environment is approximately M × Nk = 4,000. The fully random case 
was generated using a two-step process. Spatial locations were determined by simulating a 
two-dimensional spatial Poisson process, which takes as an argument the rate or density λ 
of points per unit area. Here an average density of approximately λ = 0.625 opportunities 
per unit area was used (i.e., opportunities / area = 4000/802) (Fig. 1A). Crime opportunity 
types were then randomly allocated to each location. This is a neutral counterfactual crime 
environment where we can be assured that any observed pattern in offending variety is not 
the product of spatial autocorrelation in opportunity location or type. The two regularly 
clustered cases were generated by placing Nk = 50 points from two-dimensional normal 
distributions N [p, s] centered in patches across the environment. Patch centroids were regu-
larly spaced 10 units apart along cardinal directions (

√
200 on the diagonal). Within any 

one patch, the Nk opportunities were distributed isotropically (p = 0) around the centroid, 
while the variance (s) determined the degree of within-patch opportunity type concentra-
tion as well as the degree to which adjacent patches overlap. In Fig. 1B, the variance in the 
spatial distribution of each opportunity type was equivalent to the (cardinal) patch spac-
ing (i.e., s = 10) resulting in patches that minimally overlap. In Fig. 1C, the variance was 
three times larger than the (cardinal) patch spacing (i.e., s = 30) resulting in patches that 
overlap to a substantial degree. In contrast to the random case, the clustered crime envi-
ronments introduce substantial spatial structure that may impact offending variety. Finally, 
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Fig. 1D, represents a case where patch centroids are uniform randomly distributed across 
space and the number of opportunities of each type is exponentially distributed according to 
the formula p(Nk = n) = e−0.02n. The exponential function is chosen as a simple model 
for a few very common crime opportunity types and many rare opportunity types. Within 
patches, opportunities are arrayed around the patch centroid using the two-dimensional nor-
mal N [p, s] from above. In the case illustrated, unique opportunity types vary in frequency 
from a maximum of Nk = 163 to a minimum of Nk = 2. The total number of opportunity 
types is also M x Nk ~ 4,000. The crime environment in Fig. 1D exhibits regions where there 
is substantial concentration of opportunities adjacent to regions devoid of opportunities. 
Opportunity concentration occurs both because opportunity patches may randomly over-

Fig. 1  Distribution of N crime opportunities of M distinct types in an arbitrary crime environment. (A) 
Opportunity locations are Poisson random in space and opportunity types are spatially independent. (B) 
Opportunity types are approximately equally spaced, but clustered into patches with minimal overlap. (C) 
Opportunity types are approximately equally spaced, but clustered into patches with substantial overlap. 
(D) Opportunity types are clustered into randomly spaced patches that vary in concentration. In A, B 
and C case there are around M = 80 unique crime opportunity types and around Nk = 50 opportunities per 
type for a total of around M x Nk ~ 4,000 opportunities. In D, opportunity types vary in frequency from a 
maximum of Nk = 163 to a minimum of Nk = 2 according to an exponential distribution. The total number 
of opportunities is also around M x Nk ~ 4,000
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lap and because some opportunity types are numerically much more common than others. 
Arguably, the landscape represented by Fig. 1D is the most realistic from the point of view 
of known crime patterns. We emphasize, however, that the point is not to simulate any one 
real-world environment, but rather to examine how the spatial structure of crime environ-
ments influences offending variety at a theoretical level.

The mobile offender operates within this environment of crime opportunities. Offender 
mobility is defined by the direction, distance, frequency, and duration of moves across space 
(Bernasco and Board 2012; Brantingham and Tita 2008). To be clear, the mobility modeled 
here concerns the daily movement around an environment, not “residential mobility” that 
operates over longer time scales (e.g., Sampson and Groves 1989). The simplest model for 
day-to-day mobility is to treat the offender as a discrete random walker on a two-dimension 
lattice or grid (Brantingham and Tita 2008). However, since the crime environment defined 
above is continuous in two-dimensional space, the mobile offender in our case is modeled as 
an agent engaged in continuous-in-time and continuous-in-space Brownian motion (John-
son 2014; Turchin 1998). In intuitive terms, our offender starts at a home location but can 
move in any direction, unconstrained by features of the built or social environment, and can 
move over both short and long distances, every few minutes, before returning home at after 
several hours. Brownian motion is mathematically described as a stochastic Wiener process 
Wx,y[µx,y, σx,y], which includes drift µx,y  and volatility σx,y  terms. The drift term controls 
whether there is any directional bias to the agent’s motion. The volatility term controls the 
magnitude of fluctuations in the distance moved at any moment in time. The subscripts indi-
cate that drift and volatility operate independently in the x and y dimensions. Two-dimen-
sional Brownian motion is the combination of two independent one-dimensional processes. 
Focusing on just one-dimension, the expected direction and distance of motion (relative to 
the current location) at any point in time is normally distributed as N [µx∆t, σx

√
∆t], where 

µx∆t and σx

√
∆t can be understood, respectively, as the mean and standard deviation of the 

distribution measured over some interval of time ∆t (time-step size). In principle, we can 
measure Brownian motion at any scale (from within-household to city-wide and more) by 
our choice of ∆t. Motion will be self-similar (i.e., fractal) across scales. To simplify presen-
tation, we choose ∆t = 1, meaning that we sample Brownian motion paths every one time-
step. These are defined as the turning points where criminal opportunities can be exploited 
(see below). We also define a total duration T over which an agent is engaged in motion 
during a single day. Specifically, a single excursion or mobility path begins from an anchor 
point (e.g., home) (Brantingham and Brantingham 1993), and ends after T time steps some-
where in space. While the time scale of the model is abstract and arbitrary, it may be useful 
to think of one step as equivalent to approximately 15 min and that a full day of foraging 
over T = 200 time steps is equivalent to around 13.3 h. The relationship between the time 
spent foraging and the displacement or distance from the anchor point is explored below.

Figure 2 illustrates some of the potential variability in offender mobility proscribed by 
the model. Figure  2A shows twenty-five mobility paths following a Wiener process with 
Wx,y[0,1] sampled every ∆t = 1 time step. Although the paths are stochastic realizations 
of the general process, it is evident that the ensemble is similarly distributed in all directions 
(i.e., isotropic) around the anchor point. This is understandable since µx,y = 0, meaning there 
is no drift in either the x or y dimension. By contrast, Fig. 2B simulates twenty-five realized 
paths with Wx,y [0.1,1]. Here, the arbitrary value of µx,y = 0.1 leads to a clear drift in the 
ensemble paths towards the northeast of the environment. The bias µx,y = 0.1 is in both 
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in the x and y dimensions but is expected to move each path a positive diagonal distance √
0.12 + 0.12 = 0.141421 at each sampled time step. The difference between Fig. 2A and 2 

may be thought of as capturing at an abstract level offender mobility an environment with no 
crime attractors (Fig. 2A) versus mobility in an environment with one crime attractor in the 
northeast (Fig. 2B) (Frank et al. 2011). The magnitude of the bias µx,y in some sense captures 
the strength of the attractor. Figure 2C, by contrast, shows the consequences of reducing the 
volatility of the underlying Weiner process W [0,0.5] to half that shown in Fig. 2A. Here the 
ensemble of paths is isotropic, as in Fig. 2A, but is concentrated in a more compact region 
around the anchor point. Indeed, the region covered by the paths in Fig. 2C is approximately 
half the size of that in Fig. 2A. The difference between Fig. 2A and 2 might be thought of as 
capturing at an abstract level different modes of mobility (e.g., car vs. on-foot). While real-
world mobility paths of offenders often mix mobility modes and are almost always direction-
ally biased (Daele and Bernasco 2012), in the following we choose to model offender mobility 
as isotropic Brownian motion W [0,1] and concentrate on the impact of varying the duration 
T of excursions. The goal is to understand at a theoretical level the impact of mobility mag-
nitude (displacement from an anchor point) on offending variety, without the confounding 
effects of directional biases in mobility. More complex models might consider non-Brownian 
mobility regimes such as Lévy random walks (Brantingham 2006; Johnson 2014) and mobil-
ity organized around more than one anchor point (Brantingham and Tita 2008).

We can intuit that the mobility paths like shown in Fig. 2 will place motivated offend-
ers near crime opportunities like those shown in Fig. 1. We therefore need to specify how 
such encounters lead to offenses and how we count those offenses towards a measure of 
offending variety. We assume that the mobile offender can sense crime opportunities at each 
turning point along their mobility path. Sensing occurs within some radius ρ of their current 
position. Since the model environment is entirely abstract, we assume for convenience that 
ρ = 1. If more than one crime opportunity is sensed within radius ρ, then only one of those 
opportunities is chosen at random and exploited. For simplicity, we assume that choices are 
independent across time and that opportunity types are not depleted by exploitation. Thus, 
the type of the last opportunity exploited does not influence the offender’s current choice 
and she may exploit the same opportunity an infinite number of times in a row if her mobil-

Fig. 2  Examples of repeated excursions by an offender using a Brownian motion mobility strategy. (A) 
Unbiased excursions from an anchor point following a Wiener process W [0,1]. (B) Directionally biased 
excursions following a Wiener process W [0.1,1]. (C) Unbiased excursions following a Wiener process 
W [0,0.5]. Shown in each case are twenty-five Brownian motion paths that begin at the origin (black dot) 
and terminate after T = 200 time steps. Note that panel (B) is re-centered to show the northeast bias in 
mobility paths
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ity path places her in a position to do so. More complex preference models that consider 
contagion-like effects are certainly possible (Lammers et al. 2015), a point we return to in 
the Discussion.

Exploited opportunities are tabulated into a measure of offending variety by comparing 
the type of each crime against the list of prior crimes committed by the offender along the 
current mobility path. If the crime committed is of a type not represented in the repertoire of 
previously committed crimes, the offending variety is incremented by one. If the crime com-
mitted is of the same type as a previously committed crime, the offending variety remains 
unchanged. Thus, repeated exploitation of a hyper-abundant opportunity counts no more 
towards offending variety than exploitation of a rare opportunity (Sweeten 2012). Note that 
this measure is a “path-wise” offending variety rather than life-course offending variety. 
Since the type of crime committed is strictly dependent upon opportunity type, the crime 
environment ultimately constrains offending variety. Thus, if the environment consists of 
just one crime opportunity type, then it is necessarily the case that there will be no offending 
variety. If the environment consists of many opportunity types, then offending variety may 
be much greater. However, the extent to which offenders will have diverse crime repertoires 
is connected to both the structure of the crime environment and their mobility strategy. It is 
this mechanism that we now examine.

Analysis

The following analysis proceeds in several steps. We first examine the properties of offender 
mobility, concentrating on the relationship between time spent moving and distance trav-
elled by the offender relative to their anchor point. We then examine the variability in 
offending variety within any one mobility regime given changes in the crime opportunity 
environment. Finally, we examine the relationship between increasing mobility and offend-
ing variety, focusing on the mathematical form of the relationship as a basis for empirical 
predictions.

All the analyses presented below are restricted to a small range of environmental condi-
tions and mobility regimes. We only explore the crime environments shown in Fig. 1. All 
mobility regimes involve isotropic (unbiased) Brownian motion given by a Wiener process 
W [0,1]. The only parameter that is varied is the duration T an offender spends in motion. In 
essence, how many hours in a day the offender spends foraging. For any given parameter 
set, a total of 1,000 mobility paths are simulated to capture the mean and variance in out-
comes. All simulations are run with the same random number seed so that crime environ-
ments remain stationary as mobility is allowed to vary.

Journey Time & Displacement

Brownian motion provides an intriguing model for offender mobility. A key property of 
isotropic (unbiased) mobility is that the average or expected position of an agent over time 
remains its point of origin. The result is a Gaussian probability density function (PDF) for 
the expected position of the agent that is symmetrical (in two-dimensions) about the origin. 
The PDF simply flattens out over time, reflecting a probabilistic diffusive spread.
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Here we are concerned not with the expected position of a mobile offender, but the dis-
tance traveled relative to the anchor point or origin over the course of an excursion. Specifi-
cally, we define the displacement of the offender as the Euclidean distance between where 
the forager is in two-dimensional space and their anchor point at time t. Recognize that 
displacement is different from the total distance travelled since Brownian motion is not pre-
vented from revisiting the same locations. Recall then that the Wiener process that underlies 
Brownian motion is defined by its drift µx,y , its volatility σx,y , and the duration T over 
which the offender is in motion. Intuitively, the longer an offender is in motion the greater 
the potential displacement from the originating anchor point. The relationship is highly reg-
ular. Figure 3 shows frequency distributions of displacement distances for 1,000 mobility 
paths originating at a single anchor point. The ensembles each may be thought of as obser-
vations of many independent offenders originating from the same point or, equivalently, 
repeated observations of excursions made by the same offender. In either case, the results 
in each panel differ only in the duration spent in motion T in any one mobility bout (path).

The distributional form seen in Fig.  3 was first suggested by Rayleigh (1905) and is 
characterized by an internal mode δ and a heavy tail (right skew) (Fig. 3). The mode of 
the distribution represents the most probable distance traveled relative to the anchor point, 
which is also known formally as the mean squared displacement (MSD). Theory gives the 
mean square displacement as

	 δ =
√

T � (1)

This quantity may also be estimated by fitting a Rayleigh distribution to observed or simu-
lated data on displacement distances. Figure 3 shows both theoretical (δ) and empirically 

Fig. 3  Frequency distributions of displacement distance from an anchor point by 1,000 mobile offenders 
after T time steps. The mean squared displacement—most probable distance—is shown as a red line with 
δ computed from theory and δR estimated by fitting a Rayleigh distribution to the simulated distribution
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estimated (δR, “Rayleigh”) values for the mode for each distribution, which is the MSD in 
each case. The displacement increases as the duration of mobility increases, while the vari-
ance (i.e., distributional spread) also increases.

Figure 4 plots Eq. 1 over values of T ranging from 0 to 200 time-steps. Displacement 
does increase linearly as mobility duration increases but rather is decelerating. In other 
words, extending the maximum duration of excursions from T = 10 to T = 20 has a much big-
ger proportional impact on displacement (+ 41.4%) compared with extending the duration 
from T = 110 to T = 120 (+ 4.5%). Equation 1 and Fig. 4 guide subsequent interpretations of 
changes in offending variety as a function of offender mobility.

Offending Variety

Intuition suggests that any increase in offender mobility will produce encounters with a 
greater variety of crime opportunity types and consequently increase individual offending 
variety. Figure 5 confirms this intuition and suggests that the relationship is also very regu-
lar. Each panel shows the frequency distribution of the number of unique crime types in an 
offender’s repertoire as a function of the duration of mobility T within the crime environ-
ments shown in Fig. 1. Three different values of T are shown for each crime environment. 
The offending variety distribution may be interpreted as the probability of observing an 
offending variety v given mobility duration T and an opportunity structure. For example, 
with mobility duration T = 10 and the clustered opportunity structure shown in Fig. 1B and, 
the most probable value for offending variety is two crime types (Fig. 5A, orange). With 
T = 75 (blue), the most probable offending variety is v = 4 unique crime types. With T = 200 
(green), the most probable offending variety is v = 8 unique crime types. Of course, there 
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Fig. 4  The relationship between the most probable distance traveled (mean square displacement) and the 
time spent engaged in motion given unbiased Brownian motion
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is variation around each of these expectations, which stems from variation in the distances 
covered by mobile offenders and the nature of the opportunity structure. For example, with 
T = 75 and the clustered opportunity structure from Fig. 1B, the minimum offending variety 
is v = 2 and the maximum is v = 8 (Fig. 5A, blue).

Changing the opportunity structure has visible impact on offending variety. Figure 5B 
also represents clustered opportunity types, but this time with substantial overlap in patches 
(see Fig.  1C). This shift in opportunity structure increases offending variety for each of 
the mobility regimes (T = 10, T = 75, T = 200). For example, with T = 10, the most probable 
value for offending variety shifts from one unique crime type to four unique crime types. 
The mechanism at play is easy to intuit. Mobility interacts with the spacing of opportu-
nity patches to restrict offending variety. For example, in the non-overlapping patch case 
(Fig. 1B), T = 10 typically produces short travel distances δ = 3.16 (by Eq. 1). But, since 
patch centroids are spaced 10 units apart, most excursions remain contained inside the patch 
where the offender is based, and she therefore encounters only a single crime type opportu-
nity. When patches overlap (see Fig. 1C), unique opportunities of several types occur adja-
cent to one another. Under these conditions, even short travel distances produce encounters 
with more unique crime opportunity types. Offending variety increases as a result. The 
extreme case obtains when crime opportunities are non-clustered (randomly distributed), 
and opportunity types are independent of one another (see Fig. 1A). Under these conditions 
crime opportunity types are maximally mixed and a mobile offender presents much higher 
offending variety (Fig. 5C). For example, with T = 10 the most probable value for offending 
variety increases to seven unique crime types.

Fig. 5  Histograms of offending variety for three values of T and the four different crime opportunity struc-
tures shown in Fig. 1. (A) Crime opportunities are Poisson random and independent of opportunity type 
(see Fig. 1A). (B) Crime opportunity types are clustered and mostly non-overlapping (see Fig. 1B). (C) 
Crime opportunities are clustered but overlap substantially (see Fig. 1C). (D) Opportunities are clustered 
into randomly spaced patches that vary in concentration (see Fig. 1D). Y-axis scaling is different in A and D
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Mobility & Offending Variety Relationship

Figure 5 suggests that increases in mobility lead to increases in offending variety against a 
stationary backdrop of crime opportunities. Figure 6 reveals that the relationship is indeed 
very regular. Shown are the mean and variance in offending variety v over 1,000 simulated 
paths as mobility duration is varied smoothly from T = 2 to T = 200. Visual comparison with 
Fig. 4 suggests that the functional relationship is closely related to Eq. (1) giving the most 
probable distance travelled or MSD by an offender engaged in Brownian motion. The func-
tional relationship between offending variety and mobility duration is modeled by:

	 v = β0 + β1
√

T � (2)

where β0 and β1 depend on the crime opportunity structure. The first parameter β0 is related 
to the number of unique crime opportunity types in the immediate vicinity of the offender’s 
anchor point. These are the opportunities that can be exploited within the offender’s field of 
vision ρ without movement. The second parameter β1 represents an accumulation rate for 
new opportunity types. Except for very short duration excursions (see below), the proposed 
functional form is nearly a perfect match (r2 > 0.99) across the full range of crime environ-
ments considered. Mobility controls the qualitative shape of the function—compare Figs. 
4 and 6. The crime environment controls the quantitative outcomes. In general, the more 
mixed the crime opportunity types are in the environment the faster offending variety is 

Fig. 6  Relationship between offending variety and mobility duration for the opportunity structures shown 
in Fig. 1. (A) Poisson random opportunities (see Fig. 1A). (B) Clustered, non-overlapping opportunity 
patches (Fig. 1B). (C) Clustered, overlapping opportunity patches (see Fig. 1C). (D) Opportunities are 
clustered into randomly spaced patches that vary in concentration (see Fig. 1D). Simulated mean (black, 
solid line) and 95% CI (black, dashed) in offending variety for 1,000 Brownian motion paths at each mo-
bility duration. Predicted functional relationship (red, dashed). Y-axis scaling different in A
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accumulated. For example, in Fig.  6, with mobility paths lasting T = 100 time steps the 
clustered, non-overlapping environment (see Fig. 1B) produces a mean offending variety of 
v = 5.6 unique crime types, the clustered, overlapping environment (see Fig. 1C) produces 
v = 9.6, and the random environment produces v = 31.1 (see Fig. 1A). The clustered ran-
domly spaced patched produces v = 7.5 (see Fig. 1D).

The relationship shown in Fig.  6 is important to understand from a theoretical point 
of view, but mobility duration (i.e., the time offenders spend in motion) is unlikely to be 
observed under most real-world circumstances. More practically, we can substitute Eq. 1 
into Eq. 2 yielding

	 v = β0 + β1δ� (3)

Equation 3 indicates that offending variety is a linear function of the most probable distance 
travelled by offenders (MSD) δ, which is something we might hope to observe empirically 
through journey-to-crime (or distance-to-crime) distributions (see Discussion) (Bernasco 
and Board 2012; Kent et al. 2006; Rengert 2004). Figure 7 plots the same simulated data 
shown in Fig. 6 against simulated mean travel distances. The functional relationship given 
by Eq.  3 is also shown. The theoretical model fits the simulated pattern extremely well 
except at very short travel distances in two of the three cases. The potential for a poor fit of 
Eq. 1 to short duration Brownian motion excursions was recognized by Rayleigh (1905). 
This limitation appears to carry over to Eq. 3 when predicting offending variety for offend-
ers with short range mobility regimes (~ T < 4, or δ < 2). The poor fit does not appear to hold 
for the clustered, overlapping patches. The reason for this difference is not immediately 
clear.

Model Extensions

The baseline model brings to the foreground certain theoretical observations about mobil-
ity and offending variety but is unrealistic in several important respects (see also Discus-
sion). Specifically, the offender does not discriminate among opportunity types and exploits 
those opportunities whenever they are given the chance. Here we relax the second of these 
assumptions by restricting exploitation of crime opportunities to a single location along 
one foraging path. We examine offending variety with respect to both MSD for the strategy 
overall and a journey-to-crime measure.

Controlling the Number of Crimes Committed

In the baseline model, simulated mobility strategies vary substantially in their duration and 
therefore their displacement  Mobility strategies that are short in duration may consist of 
just a few turning points while those long in duration can consist of hundreds of turning 
points over the course of a simulated day. Because the baseline model assumes that crimes 
occur at sampled turning points, short duration paths generate far fewer crimes than long 
duration paths. It is perhaps not surprising then that offending variety increases with mobil-
ity duration T  since this is correlated with increased sample size (see also Brantingham 
2016; Ugland et al. 2003). It is more realistic to assume, however, that each foraging path 
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produces a single crime. Offending variety is therefore assembled over many such path-
event pairs. The advantage of this extended model is that mobility strategies different in 
duration T  and displacement δ generate the same number of crimes, more clearly isolating 
the effects of mobility on offending variety.

Figure 8 presents simulations using two different assumptions about how single crime 
events are related to single mobility paths. Figure  8A shows one mobility path for one 
offender. The anchor point is shown in white. The red point represents the case where the 
offender exploits an opportunity at the exact endpoint of the mobility path, which occurs at 
t = T  time units. The blue point represents the case where the offender randomly exploits 
an opportunity at some point along the mobility path, which occurs at 0 ≤ t ≤ T  time units. 
For convenience, the red and blue points are shown on a single mobility path, but in our 
simulations each mobility path at most generates one exploited crime opportunity. The MSD 
of this path (and any path for this offender) is a fixed quantity defined by T . The journey-
to-crime distance to each event relative to the anchor point is also shown as dashed red and 
blue lines for the exploited endpoint and random point, respectively (see below). Figure 8B 
shows the simulated relationship between offending variety v and the MSD for offend-
ers committing endpoint crimes (red) and random point crimes (blue). Offending variety 
increases linearly with increased mobility in both cases. The difference in slope between 
endpoint and random point crimes is a result of path censoring. For the same MSD, endpoint 

Fig. 7  Relationship between offending variety and mean squared displacement for the opportunity struc-
tures shown in Fig. 1. (A) Poisson random opportunities (see Fig. 1A). (B) Clustered, non-overlapping 
opportunity patches (Fig. 1B). (C) Clustered, overlapping opportunity patches (see Fig. 1C). (D) Oppor-
tunities are clustered into randomly spaced patches that vary in concentration (see Fig. 1D). Simulated 
mean (black, solid line) offending variety for 1,000 Brownian motion paths at each mean squared dis-
placement. Predicted functional relationship (orange, solid). Y-axis scaling different in A. The deviation 
in between simulated offending variety and the expected functional form at short distances is marked in 
A, B and D
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offending allows greater exploitation of opportunities that are farther from the anchor point 
based on journey-to-crime distances (Fig. 9A). Random point offending, by contrast, will 
tend to censor longer paths and thus concentrate more exploitation among opportunities 
closer to the anchor point. As seen in the baseline model, a greater foraging range drives 
encounters with more unique crime opportunity types and thus greater offending variety. 
Random point offending reduces the effective foraging range of the same underlying mobil-
ity strategy defined by equivalent MSD values. Nevertheless, it is important to recognize 
that the functional relationship between offending variety and MSD is qualitatively similar 
to the baseline model in both path-event cases (see Fig. 7). This suggests that the functional 
forms that emerge from the baseline model are relatively robust to sample size differences. 
That is, whether we are dealing with offenders who commit many crimes in a spree-like 
fashion or those who commit just one crime at the endpoint or random point over many 
paths, we should expect higher offending variety for more mobile offenders.

Figure 8C addresses a separate issue related to measuring the magnitude of mobility. 
In the baseline model (and Fig. 8B), offending variety is plotted against MSD, which is 
an “offender-centric” summary measure of the mobility strategy. For example, an offender 
who engages in foraging bouts lasting exactly T = 100 time steps has an MSD of δ = 10, 
although individual paths within the strategy may end up closer or farther from the anchor 
point than this summary value (see Fig.  3). Journey-to-crime, by contrast, is an “event-

Fig. 8  Simulated journey-to-crime processes and its impact on offending variety. (A) One daily mobility 
path showing the anchor point (white point) and examples two types of event-path relationships. The red 
point illustrates an opportunity exploited at the endpoint of each Brownian motion path. The blue point 
represents an opportunity exploited at a random point along the path. The red and blue dashed lines show 
how journey-to-crime distances would be measured for each exploited crime opportunity. (B) Offending 
variety resulting from exploitation of only endpoint and random opportunities plotted against the mean 
squared displacement. (C) Offending variety resulting from exploitation of endpoint and random opportu-
nities plotted against the journey-to-crime distance for each crime committed by offenders with a strategy 
defined by T. Each simulation consists of 1,000 paths by an offender over mobility durations lasting 
from T = 2 through T = 200, corresponding to expected mean squared displacement between δ = 1.41 and 
δ = 14.14 units from the anchor point. Each path results in only one exploited opportunity. Offending 
variety is aggregated over the 1,000 simulated paths per displacement distance band
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centric” measure that tracks the linear distance (i.e., displacement) between a crime event 
and the offender’s anchor point (usually home). Here we turn this event-centric measure into 
a general mobility measure by computing the mean journey-to-crime distance over the col-
lection of crimes committed by an offender. Offending variety is computed across the same 
set of crimes used to calculate the mean journey-to-crime distance for each offender. As 
seen in Fig. 8C, offending variety also rises with mean journey-to-crime distance in a linear 
fashion consistent with baseline model. The mean journey-to-crime distance for endpoint 
exploitation is farther from the anchor point compared to the corresponding MSD; e.g., the 
rightmost red point in Fig. 8C has a mean journey-to-crime distance of around de = 17.0, 
while the corresponding point in Fig. 8B has an MSD of δe = 14.14 (i.e., T = 200). The 
mean journey-to-crime distance for random point exploitation is slightly less than the corre-
sponding MSD (i.e., dr = 11.2 vs. δr = 14.14 for the rightmost blue point) because of path 
censoring. Endpoint and random point offending closely parallel one another (equivalent 
slopes: t = 0.41, p = 0.68). Yet, random point exploitation produces small, but significantly 
greater offending variety at the same mean journey-to-crime distance (significantly differ-
ent intercepts: t = −2.73, p < 0.01). For the same mean journey-to-crime distance, the 
distribution of journey-to-crime distances is more skewed, producing individual journey-
to-crime distances that are farther from the anchor point (i.e., longer, fatter tail) (Fig. 9B). 
This pattern reflects that the underlying mobility strategy for the random point crimes has a 
higher MSD despite the equivalent mean journey-to-crime distances. These longer journeys 
allow random point exploitation to produce higher offending variety despite path censoring.

Discussion

This paper has sought to develop baseline theory for the relationship between offender 
mobility and offending variety. The central proposition is that mobile offenders should be 
exposed to a range of crime opportunity types as they move around their environment. 
As a result, more mobile offenders should display greater offending variety. The approach 
taken was to strip away many ethnographic-scale details to get at the core features of crime 

Fig. 9  Journey-to-crime distances for endpoint (red) and random point (blue) crimes matched by MSD 
and mean journey-to-crime distance. (A) For the same underlying MSD δ = 7.4 (T = 55), the mean 
journey-to-crime distance is shorter for random point crimes (dr = 6.2 vs. de = 9.2) and a thinner dis-
tribution tail compared to endpoint crimes. (B) For the same mean journey-to-crime distance d = 6.2, 
the underlying MSD is greater for random point crimes (δr = 7.4 vs δe = 5.0) and the distribution has 
a longer, fatter tail compared to endpoint crimes
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environments and behavioral routines that may interact to produce offending variety. Crime 
environments were modeled as arbitrary spatial regions with different opportunity types 
treated as discrete point locations. Offender mobility was modeled as individuals engaged 
in isotropic (unbiased) Brownian motion. Over the course of movement, offenders sense 
opportunities and exploit them when encountered. The model tracked encounters with new 
opportunity types over time to produce a measure of offending variety. The central find-
ing was that increased mobility can plausibly lead to increased offending variety. It was 
also shown that greater spatial overlap in crime opportunity types has a similar effect to 
increased mobility. These observations hold both for the baseline model, where offend-
ers exploit opportunities whenever encountered, and for a journey-to-crime model where 
offenders commit just one crime along any one mobility path.

A key focus of this paper was on the mathematical specification (Eq. 1) of the relation-
ship between mobility duration (T) and spatial displacement of the forager (δ). To be clear, 
this is by no means a “new” result as the mathematical properties of Brownian motion (and 
random walks as the discrete counterpart) have been investigated for more than 100 years 
(Pearson 1905; Rayleigh 1905). What is new is the extension of these fundamental mathe-
matical properties to the study of offending variety. The analysis suggests a relatively simple 
mathematical relationship based on Brownian motion (Eqs. 2 and 3) may describe the way 
in which crime environments can interact with offender mobility to produce offending vari-
ety, at least under the stylized conditions established here.

The analysis leads to two predictions and suggests at least one way in which they might 
be empirically tested. The qualitative prediction is that offending variety should be higher 
for offenders with greater mobility. To be clear, greater mobility in this case means greater 
distance travelled relative to an anchor point (i.e., displacement) during daily movement 
bouts, not greater residential mobility. The quantitative prediction is that the increase in 
offending variety should be linear as a function of displacement distance. The latter predic-
tion is connected directly to Eq. 3.

Empirical testing of the model presented here could proceed at several levels of complex-
ity. At one extreme, we could look to individual-level survey data that includes self-reported 
dominant transportation mode used (e.g., foot, bicycle, public transit, private car) (Bichler 
et al. 2011) and “how many from this list” measures of offending variety (Farrington 1973; 
Sweeten 2012). Provided that a uniform time measurement can be established (e.g., “in 
the last 12 months…”)(Monahan and Piquero 2009), we expect to see offending variety to 
increase with dominant transportation mode, ordered by expected displacement (see Ander-
son and Hughes 2009; Snook 2004). If the ordering of displacement was by a scalar (con-
tinuous) value such as kilometers, then the functional form should be linear, consistent with 
both the baseline and journey-to-crime models presented here (see Figs. 7 and 8). At the 
other extreme, fine-grained movement data based on cell-tower or GPS tracking could allow 
direct examination of how offending variety is assembled over bouts of routine mobility 
(e.g., Zhou et al. 2025). However, such data are likely to remain highly restricted under most 
circumstances. Of intermediate complexity, data recording journey-to-crime distances from 
key anchor points paired with crime type information could be aggregated across offenders 
to examine offending variety as a function of mean journey-to-crime distances. Most studies 
on journey-to-crime focus on single crime types or classes (see Bichler et al. 2011). Since 
most offenders are thought to be generalists, however, constructing journey-to-crime data 
sets that including all crime types should already be possible. The expectation is that offend-
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ing variety will increase with increasing mobility, consistent with our journey-to-crime 
models. Of course, we expect that other covariates will matter alongside direct and indi-
rect measures of mobility including but not limited to offender age (Monahan and Piquero 
2009), routine activity patterns (Hoeben et al. 2021), co-offending networks (McGloin and 
Piquero 2010), and the distribution of other social and economic resources (Browning et al. 
2022; Cai et al. 2024).

Several limitations to the present approach are worth mentioning. First, there is a degree 
of ambiguity about direction of causality linking mobility and offending variety. The present 
model assumes a “forward process” wherein mobility drives encounters with crime oppor-
tunities which translates into offending variety, when measured over many observed mobil-
ity paths. However, it is also possible that individuals start with different preferences to 
be “low variety”, “medium variety” or “high variety” offenders (actually, anywhere along 
the continuum) and choose mobility strategies to satisfy those preferences. Assuming that 
crime opportunities are dispersed in space, then “high variety” offenders would necessarily 
develop long-range mobility strategies, while “low variety” would have short-range mobil-
ity strategies. The statistical patterns for offending variety against displacement or mean 
journey-to-crime distances would be like those simulated here, but the causal arrow would 
point from offending variety to mobility rather than mobility to offending variety. While 
there is no easy solution to this problem (but see Bernasco and Board 2012), we can at least 
argue that a model where mobility drives offending variety is theoretically preferrable to 
the alternative since it does not make assumptions about offender preferences (i.e., appeal-
ing to Occam’s razor). The task, then, is to reject the simpler model before proceeding to 
more complex alternatives. This is where abstract, simple models—and especially neutral 
models—can shine as tool for surfacing core theoretical insights (Gotelli and McGill 2006).

Nevertheless, the reader might assume that simple model presented here should be easy 
to reject and therefore wonder what the next steps might be. A few incremental extensions 
are discussed here. First, biased Brownian motion and non-Brownian motion mobility strat-
egies might be investigated. While isotropic Brownian motion is a useful theoretical start-
ing point, under most circumstances it seems reasonable to expect that offender mobility is 
anisotropic (e.g., Frank et al. 2011), and non-diffusive (e.g., Vandeviver et al. 2015). The 
models presented are sufficient to investigate at a theoretical level the impact of biased 
motion (see Fig. 2B). Other studies have shown how Brownian motion is a special class 
of Lévy motion, which allows clusters of short-range excursions separated by long-dis-
tance “flights” (e.g., Brantingham 2006; Johnson 2014; Viswanathan et al. 1996). Second, 
it may be important to develop simulations of offender mobility in real-world environments 
(Davies and Bishop 2013; Groff 2007). The barriers and corridors created by street networks 
and other topographic or social features of the landscape (e.g., Bernasco and Block 2011; 
Smith et al. 2012) almost certainly impact how mobility strategies play out in the real world. 
Similarly, the models could be extended to examine mobility against real-world distribu-
tions of both crime opportunities and other social and economic resources that motivate 
movement across the urban landscape (Browning et al. 2022; Cai et al. 2024). However, 
there are significant definitional and measurement challenges to developing more complex 
and realistic models. While it may be obvious how to map residential burglary opportuni-
ties, it is less clear how to define and spatially delineate boundaries for other crime types 
such as assault, or robbery where victim mobility also matters (Luo et al. 2021).
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Incorporating offender preferences in ways that might reverse the direction of causa-
tion should also present interesting challenges. It should not be a surprise if we assume 
that offenders prefer certain crime types and then find that those crime types are part of the 
offending variety generated by a simulation model. To avoid circular reasoning it is perhaps 
best to proceed in an incremental fashion. For example, one step up in complexity from the 
baseline neutral model would be to assume that unique opportunity types are associated 
with different stationary probabilities of exploitation upon encounter. Low preference types 
would still be part of offending variety if they are abundant enough in the environment, 
while high preference types might not appear if they are too rare. We could then explore 
how preferences and opportunities are balanced via Brownian motion mobility strategies, 
maintaining that key part of the baseline neutral model. A further step up in complexity 
might assume that that there are contagion-like effects akin to near-repeat victimization 
(e.g., Lammers et al. 2015). For example, in addition to different stationary probabilities 
across opportunity types, that preferences are also “self-exciting” (Mohler et al. 2011). An 
encounter with opportunity type k causes a spike in the preference for that opportunity type 
increases the probability that it is exploited if encountered again in a relatively short period 
of time. If it is not encountered again, then the heightened preference decays back towards 
the baseline probability. Here, understanding the interactions between baseline preferences, 
self-excitation and Brownian motion mobility would be of interest. We leave these alterna-
tives for future work.
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