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Archaeological evidence of mobility is often analyzed using ethnographic-scale models of individual foraging
trips and residential moves as a point of reference. Due to site formation processes and the limitations of
geochronology, the archaeological record rarely offers the kind of fine-grained resolution needed to identify
mobility events at this scale. Here we explore an alternative, macroarchaeological approach that asks how site
occupation patterns in a region balance the evolutionary tradeoff between exploration and exploitation. We use a
statistical point process model that equates independent-in-time occupations with mobility-driven exploration
and dependent-in-time occupations with mobility-driven exploitation. We evaluate the theoretical expectations
against the archaeological record of North America using radiocarbon dates from multi-occupation sites. We find
strong clustering at short waiting-time intervals of less than under 1000 years, consistent with a model of
mobility-driven exploitation at those scales. At longer time scales, waiting times are consistent with a model of

mobility-driven exploration. Implications for social learning and niche construction models are explored.

1. The Visibility of mobility

The quality of the archaeological record leaves much to be desired.
The impact of site destructive processes means that much of what would
have been there to observe does not survive (Surovell and Brantingham,
2007; Surovell, et al., 2009). The impact of pre- and post-depositional
mixing processes means that what does survive is often inextricably
jumbled (Brantingham, et al., 2007; Perreault, 2018). The impact of
uncertainties in geochronological techniques means that much of what
we do recover from the archaeological record cannot be assigned with
great precision to a particular point in time. Given these challenges, we
will start with a bold claim that the usual fine-grained differences be-
tween forager mobility regimes—obvious perhaps in ethnographic
context—are mostly not easily differentiable in the archaeological re-
cord (Perreault, 2019; Premo, 2014; Stern, 1994).

This bold claim glosses over many efforts to use data on tool stone
diversity, toolkit diversity, retouch intensity, faunal diversity, field
processing of resources, site structure, and many other metrics, to
identify residential and logistical mobility, within- and between patch
movement patterns, and seasonal mobility rounds (Davies, et al., 2018;
Féblot-Augustins, 1993; Kuhn, 2020; Marin, et al., 2019; Surovell,
2009). Nevertheless, we ask the reader to suspend disbelief and consider
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what we might say about mobility if we cannot look at fine-grained
regime differences. Rather than focusing modeling and measuring the
microscopic features of mobility, such as move-length and move direc-
tion (Brantingham, 2003; Haas and Kuhn, 2019), we could focus on
macroscopic patterns in the archaeological record that emerge in part
from ethnographic-scale mobility processes but are not easily reducible
to them (McGill, 2019; Smith, et al., 2008). Here we suggest that the
waiting time between discrete occupations is just such a macro-
archaeological variable. A waiting time between archaeological occu-
pations at a single location is the difference in time between the
abandonment of an older occupation and the initiation of a younger
occupation. These occupation events may be tied to a range of behav-
ioral and ecological processes, but a proximate cause is mobility that
carries people to and from activity locations. When aggregated over
large spatial and temporal scales, and diverse cultural groupings, wait-
ing times between occupations may reflect in part the broader adaptive
function of mobility at higher scales. By way of analogy, the waiting
time between occupations across a collection of locations is analogous to
the time between the last appearance datum of an ancestral species and
the first appearance datum of a daughter species across a collection of
taxa. The distribution of waiting times between occupations thus may
reveal the operation of macroarchaeological processes analogous to the
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macroevolutionary processes driving evolutionary sorting at higher
taxonomic scales (Hautmann, 2020).

2. Adaptive exploration vs. Exploitation

Foragers are confronted with a fundamental tradeoff; whether to
exploit a known environment, or to search for better conditions else-
where. The tradeoff between exploration and exploitation is well-known
to archaeologists through the marginal value theorem (e.g., Bettinger
and Grote, 2016; Charnov, 1976), but it is a far more general distinction
than that. The tradeoff features prominently, for example, in the design
of machine learning algorithms (e.g., Auer, 2002) and is central to the
idea of how natural selection traverses “adaptive landscapes” (Arnold,
et al., 2001; Lenormand, et al., 2009). In all of these contexts, it is
assumed that successful exploitation comes at the potential cost of being
stuck on some local optimum rather than locating a global optimum.
Conversely, continually searching for that global optimum comes at the
cost of giving up on productively exploiting what is already known.

Mobility is a primary mechanism by which foragers navigate this
fundamental tradeoff. Solutions to this tradeoff may be found in
balancing movement (exploration) over sedentism (exploitation) (see
also Bocinsky, et al., 2016; Kelly, 1992), or residential (exploration) over
logistical (exploitation) mobility. However, as discussed above, the
quality of the archaeological record may present a problem in dis-
tinguishing relative movement from relative sedentism, or unanchored
(residential) from central place foraging across archaeological contexts.
In spite of the ethnographic-scale differences inherent to these mobility
regimes, they all generate archaeological deposits recognized as “oc-
cupations.” A forager-centric approach urges us to look within such
occupations for evidence of movement (Brantingham, 2003; Kuhn,
2020) or occupation intensity (Surovell, 2003) that might sort this out. A
shift to a location-centric model may provide new ways of viewing
mobility that are more suited to the quality of the archaeological record.

3. From a forager-centric to a location-centric model

Consider the following simplified model of an archaeological record.
The record is contained in a spatially bounded (finite) region consisting
of a large number of locations that could have been occupied by for-
agers. We are interested in all archaeological occupations dating be-
tween some starting and ending age (e.g., between say 10 ka and 15 ka).
Therefore, the only observable measures considered here are the spatial
locations and dates of discrete archaeological occupations. We use the
term “discrete” to mean only that each occupation is well-bounded in
space and time, not that they correspond to single ethnographic-scale
behavioral event, nor to a specific culture-historic horizonation. The
onset of an occupation is analogous to a first appearance datum of a
taxon and abandonment to the last appearance datum in paleontology.
We return to the potential impact of different sources of bias (e.g., site
destruction) on the observability of archaeological occupations in the
discussion. The primary question is how the spatio-temporal patterns of
occupations might reflect the two proposed functions of mobility,
exploration and exploitation, without relying on the common
ethnographic-scale typologies of mobility regimes.

3.1. A model of adaptive exploration

We adopt a very specific definition of “adaptive exploration” from
the literature on machine learning. The characteristic feature of adap-
tive exploration is the independence of the present course of action from
past courses of action. In the case of forager mobility, this means that
any location visited at time t+1 is independent of the location visited
not only at time t, but also all previous times. In other words, occupa-
tions generated by adaptive exploration are “memoryless.” Note here
that adaptive exploration encompasses more than just the first
encounter with a territory (i.e., initial landscape colonization). Adaptive
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exploration also includes repeated visits to a location where prior oc-
cupations have no detectible influence on the current occupation. That
is, each repeated visit is made as if it has never been visited before.
Intuitively, adaptive exploration would describe sequential occupations
that were first encounters with the location by independent foraging
groups who never shared information, or visits by the same foraging
group (in some genetic or cultural sense) that had lost all information
about the location between repeated occupations (Henrich, 2004),
making them sequentially independent.

In a memoryless system, we are free to abandon a forager-centric
approach, ignoring the microscale features of mobility, and adopt a
macroscopic measure that is simply the rate of occupation of a location.
The temporal pattern of occupation at a location is not exclusively
generated by mobility, but mobility is a proximate mechanism that ends
one occupation and initiates a new one. The temporal pattern of occu-
pation at a given location can be characterized by a single macroscopic
parameter A, which is the stationary rate of site occupation. For example,
A = 0.001 reflects a mean rate of one independent occupation per 1,000
units of time (years, through the rest of the paper). Occupations at one
location emerging at a stationary rate 1 are recognized statistically as a
Poisson point process. We would say that the macroscopic pattern across
occupations is one of adaptive exploration because each of the occu-
pations are statistically independent events. Note that at this scale of
analysis we are not concerned with the ethnographic-scale exploration
and exploitation of different resources in the vicinity of occupation,
simply with whether people visited the place and left detectable evi-
dence of that visit.

Importantly, this model of adaptive exploration also applies when
our bounded region contains several different patch types. For
simplicity, we assume that these patch types are spatially stationary and
stable over time. We consider the consequences of this assumption in the
discussion. While we might not be able to directly observe any of the
biotic and abiotic conditions that characterize these patches, we can
imagine that patch conditions influence occupation rates. Thus, a poor-
quality patch (Type 0) might be expected to host an independent
occupation once every 20,000 years, or 4o = 0.00005. Two slightly
better patches (Type 1 and Type 2) might host independent occupations
once every 2,500 years, or 4; = 0.0004, or once every 1,000 years, or
A2 = 0.001, respectively. The best patch (Type 3) might host an occu-
pation once every 250 years, or A3 = 0.004. If occupations within
patches are independent of one another, then occupations in adjacent
patches are also independent of one another (Short, et al., 2009). At this
macroscopic scale we ignore the impact of things such as the distance
between patches because the role of ethnographic-scale mobility in
navigated these challenges is largely unobservable. Similarly, we ignore
such things as seasonal variation since this variation is necessarily built
into the mean occupation rate. Hypothetically, patches of Type 0 might
represent a proportion wy = 0.5 of the region, those of Type 1 a pro-
portion w; = 0.3 of the regions, Type 2 wy = 0.15 of the region, and
Type 3 w3 = 0.05 of the region. Thus, poor-quality patches are common
and high-quality patches are rare. This setup is represented as a type of
compartmental model in Fig. 1A.

Remarkably, under the conditions outlined above, the expected
spatial distribution of archaeological occupations at the regional scale
may be highly clustered (and therefore spatially non-random), or
entirely randomly (Fig. 2). It all depends on the spatial distribution of
patch qualities. At the same time, there can be extreme variation in the
concentration of archaeological occupations between patches, regard-
less of the regional pattern. The degree of concentration of archaeo-
logical occupations is controlled by between-patch differences in the
occupation rate. The key observation is that adaptive exploration is
capable of generating both high levels of clustering and highly unequal
levels of occupation concentration, even though occupations are
modeled as completely memoryless.

The pattern of archaeological occupations through time tells a
somewhat different story. A natural way to look at the temporal record
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Fig. 1. Compartmental models for occupation dynamics of a region. (A)
Adaptive exploration is modeled as a series of independent compartments with
occupation rates 4. Each patch can only be of one type (color coded) that re-
mains constant over time. Patches occur at different frequencies in the envi-
ronment wy, which is also reflected by compartment size. (B) Adaptive
exploitation is modeled as a series of coupled (non-independent) compartments.
Each compartment is associated with an occupation rate 4, and each time a
discrete occupation occurs it triggers a probabilistic “transition” to a different
occupation rate (or probabilistically remains the same). Only transition paths to
occupation rates of Type 1 (yellow) are labeled. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of
this article.)

for our model region is to examine how occupations are distributed over
time. Assume that we are able to date each and every discrete occupa-
tion. We take all of those dates and produce a histogram of the number of
dates falling into 250 year bins across our temporal window of obser-
vation (e.g., 10 to 15 ka). It is possible to show via both theory (Short,
et al., 2009) and via simulation that the expected frequency distribution
of occupations under mobility-driven exploration is uniform over time
(Fig. 3A). This is because exploratory occupations are defined theoret-
ically as a random arrival process—hidden ethnographic-scale mobility

A

clustered patches

random patches
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being responsible for the arrivals—that happens independently in each
patch. That this distribution is uniform, in spite of the variation in patch
qualities, may be surprising. However, as long as patch qualities remain
stationary over time (i.e., this is a homogeneous Poisson Process), the
spatial variation in patches is of no consequence to the expected fre-
quency occupations in any given year. Technically, the sum of k inde-
pendent Poisson processes is also a Poisson process with rate = 3, Ak.

A different observation pertains to the distribution of waiting time
between occupations under mobility-driven exploration. Recall that we
are studying a bounded region over a fixed period of time, hypotheti-
cally between 10 ka and 15 ka. Imagine that we take each patch under
observation and count the number of discrete occupations that fall
within the observational time window. For example, imagine one patch
with dated occupations at 8500 BP, 10,200 BP, 13,700 BP and 15,975
BP. The oldest and youngest occupations are outside of our time window
of interest between 10 ka and 15 ka and therefore are not counted. The
two intermediate occupations, at 10,200 BP and 13,700 BP, are within
the observational window. This is an example of a repeat occupation,
but we can imagine other patches that generate zero, one, three, four or
more occupations over a fixed observational time window. Define a k-
occupation patch as a location that sees exactly k discrete occupations
over the observational time window. So, in the hypothetical example
above, this is a two-occupation site (or “2-occupation” to underscore the
numerical quantity).

The next step is to take all two-occupation sites in the region that fall
within the fixed observational time window and compute the “waiting
time” between those occupations on a site-by-site basis. This is simply
the date of the older occupation minus the date of the younger occu-
pation at each two-occupation site; in our example, 13,700 BP — 10, 200
BP = 3,500 years. Whereas theory leads us to expect that each year over
the observational window is equally likely to contain an occupation, we
do not expect all waiting times between occupations to be equally likely.
The reason is straightforward. Assume a bin size of 250 years, and a
temporal window of observation lasting 5000 years. In this case, there
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Fig. 2. Relationship between the spatial distribution of patches (A and C) and spatial distribution of archaeological occupations (B and D) under exploratory ad-
aptations. Colors of patches indicate increasing occupation rate from 1 occupation per 20 ka (gray) to 1 occupation per 250 years (red) (see Fig. 1). Occupations are
simulated using a within-patch Poisson processes with rate 1, for each patch type k. Note how the areas of highest occupation concentrations (red locations in B and
D), correspond to the highest quality patches (red patches in A and C) and the lowest occupation intensities (blue locations) correspond to lowest quality patches
(gray). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Temporal occupation patterns arising from mobility-driven exploration. (A) The frequency distribution of all occupations in the region grouped into 250 year
bins. (B) The frequency distribution of waiting times between occupations for patches (locations) that preserve exactly two occupations in a fixed time window.

are 20 bins overall and exactly 20 —1 ways in which two occupations can
differ in age by 250 years. For example, the occupations might date to
the 10,000-10,250 BP bin and 10,250-10,500 BP bin, the
10,250-10,500 BP bin and 10,500-10,750 BP bin, ..., or the
14,500-14,750 BP bin and the 14,750-15,000 BP bin. There are 20 —2
ways in which two occupations can differ in age by 500 years. That is,
the occupations might date to 10,000-10,250 BP bin and the
10,750-11,000 BP bin, the 10,500-10,750 BP bin and 11,250-11,500
BP bin, ..., or the 14,000-14,250 BP bin and 14,750-15,000 BP bin.
Extending the logic of this counting process shows that there is only one
way (20 —19) in which two occupations at the same site can differ by
4,500 years. That is, the occupations must date to the 10,000-10,250 BP
bin and the 14,750-15,000 BP bin. Viewed as a combinatorial problem,
it is possible to write out an explicit equation describing the expected
distribution of waiting times between the occupations at two-occupation
sites arising from mobility-driven exploration (Short, et al., 2009):

2(T—1)

T(T+1) )

Dr=2(7) = A

where T is the total duration of the fixed window of observation (e.g.,
T = 5000 years), 7 is the waiting time between occupations, and A is the
bin size at which we decide to count (e.g., A = 250 years). Simulations
of archaeological occupations arising from adaptive exploration follow
very closely the theoretical predictions of Equation (1) (Fig. 3B). Indeed,
we propose that Equation (1) provides the basis for a robust test of
whether occupations in a region correspond to adaptive exploration. We
will address sample size questions in the empirical case study presented
below.

3.2. Adaptive exploitation

The assumptions that underlie the proposed model of adaptive
exploration are quite strict. In particular, the assumption that occupa-
tions of all patches are “memoryless” seems likely to be violated, though
we should not discount out of hand the evolutionary value of “memo-
ryless” adaptations (Lenormand, et al., 2009). The history of occupa-
tions in a patch may indeed influence the future occupations and we
need a model to describe how this happens.

Consider, as we did above, a region that contains patches of different
qualities, which are marked by different occupation rates 1. Imagine
now a process whereby foragers learn something about or modify the
patches they encounter in a way that leads them to increase the rate of
occupation of that patch. The most obvious case in which this might
occur is where foragers engage in niche construction (Haas and Kuhn,
2019; Odling-Smee, et al., 1996), modifying the environment in ways
that make the patch more amenable (than the baseline state of nature) to

future occupation. As long as what is learned about the patch or the
niche construction persists over supra-ethnographic time scales, then
the process is macroarchaeological. We can represent this process
mathematically as a connected compartmental model (Fig. 1B). No
matter what state a patch starts in, the occurrence of a discrete occu-
pation triggers a probabilistic transition that may land that patch in a
different occupation rate group. For example, imagine one of the rare
occupations in a low-quality patch with an average rate of occupation
once every 20,000 years. Foragers present during this occupation
engage in some level of niche construction that “improves” patch quality
above the baseline. The rate of occupation then becomes one occupation
every 2,500 years. The transition process is described by a term wy;,
which is the probability that a patch in state k = 0 transitions to a patch
in state k = 1. Another occupation in that same patch at some later time
(on average within the next 2500 years after the first) might lead to a
probabilistic transition back to that same state (i.e., wy1) or a transition
to some other state (i.e., wix). This dynamic process happens for all
patches in continuous time and constantly generates occupations across
the region.

The impact of this dynamical process on the spatial patterning of
discrete occupations across the region is surprising for its lack of
distinctiveness (Fig. 4). As with adaptive exploration, adaptive exploi-
tation is also capable of producing clusters of occupations (note the
spatial cluster of locations highlighted in the upper left corner) and
substantial concentration of occupations in particular patches (red and
orange locations). An obvious conclusion is that spatial clustering (and
concentration) of occupations alone is not sufficient on its own to
determine if mobility systems follow adaptive exploration or adaptive
exploitation.

By contrast, the temporal pattern of occupation associated with
adaptive exploitation can be very distinctive. Using the same “fixed
window” counting procedures presented above, we can plot the histo-
gram of waiting times for 2-repeat occupations in patches in our region.
Recall that k-repeats are patches that display exactly k discrete occu-
pations in a fixed time window of observation. We draw again on the
example of a 5,000 year observational window, but this time we simu-
late patch change using transition probabilities to new states wyy = 0.5,
wir = 0.3, wxgy = 0.15, and wys = 0.05. Probabilistic transition to the
same state is the complement of the transition out of that state; for
example, wz3 = 1 —wi3 = 0.95. Except for poor quality patches, a
probabilistic transition into a higher quality patch is likely to remain so
for a while (the higher the quality the longer it will stay there).
Behaviorally, this may be interpreted as a principle that more extensive
niche construction persists longer. Importantly, the observed patterns
are not particularly sensitive to these modeling choices. Fig. 5 shows
that the frequency distribution of waiting times between occupations
(for 2-repeats) clusters much more strongly around short waiting time
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clustered occupations

Fig. 4. Distribution and concentration of occupations in a region experiencing
adaptive exploitation. The normalized number of occupations is represented by
color (dark blue = few; red = many). A spatial cluster of four adjacent location
with a higher density of occupations is circled. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 5. Frequency distribution of waiting time between discrete occupations for
patches with exactly two occupations (k-repeat, k = 2) observed over a fixed
time window of 5,000 years. Shown is the simulated distribution compared
with the expectation for adaptive exploration, which is computed mathemati-
cally. There is much more clustering of short waiting times between occupa-
tions where there is adaptive exploitation of patches.

intervals compared with adaptive exploration (red line) (compare with
Fig. 3B).

4. A Tentative empirical case study

We focus on the temporal patterns of occupation to evaluate our
working model, leaving spatial patterns for future consideration. Spe-
cifically, we examine the frequency distribution of the waiting times
between archaeological occupations defined by statistical clustering of
radiocarbon dates. We focus on 59 archaeological sites in North America
dated between 11,500- and 0.5 cal. ka. The sample includes sites that are
identified as having exactly two discrete occupations in this 11,000 year
window of observation. Sites with a single occupation, or more than two
occupations are not considered (see the discussion).

If the adaptive exploration model holds true, we expect to observe a
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linear distribution waiting times between occupations. If the adaptive
exploitation model is closer to the actual situation, resulting in prefer-
ential attachment to certain sites on the landscape, we expect a curvi-
linear departure from the linear distribution such that short-duration
hiatuses are over-represented and long-duration hiatuses under-
represented. Here we describe the procedures for data preparation,
cluster analysis, and hypothesis evaluation, as well as a few leading
cautionary notes.

4.1. Data preparation

To generate a database of two-occupation archaeological sites, we
use the Canadian Archaeological Radiocarbon Database (CARD) (Kelly,
etal., 2022) as downloaded on October 26, 2021. CARD is a compilation
of radiocarbon dates and standard error terms from archaeological sites
throughout North America. The raw dataset includes 104,641 entries.
However, many of these are irrelevant to the current analysis, thus
requiring a data culling and cleaning procedure including the following
five steps: (1) All date types that are identified as non-archaeological are
removed. This tends to include geologic or paleoecological dates; (2)
Normalized dates and standard errors, which account for material-
specific isotopic fractionation, are used where possible. Measured
dates and standard errors are used in other cases. Any dates without
error estimates are removed; (3) Individual archaeological sites are
identified as the composite of the site ID and site name fields. This step
avoids spurious associations of unrelated sites that share the same name
and sites that do not have a site ID or site name. Sites with neither a site
ID nor site name are removed; (4) Dates that are younger than 95 14C BP
or older than 50,193 are removed due to unreliability and in-
compatibility with radiocarbon calibration curves; and (5) Sites with
fewer than 30 dates are removed to reduce small-sample effects. The
resultant database after cleaning includes 10,769 radiocarbon dates
from 227 archaeological sites.

Dates are then calibrated using the Intcal20 calibration curve
(Reimer, et al., 2020) using the Bchron radiocarbon calibration package
(Haslett and Parnell, 2008) as implemented in R statistical computing
language. For each date, the highest probability integer date is selected
from the calibrated probability curve. If several integer dates share the
highest probability value, they are averaged. These calibrated maximum
likelihood radiocarbon dates serve as the basis for identifying two-
occupation sites and the time spans between occupations.

4.2. Cluster analysis

To identify temporally discrete occupations in the radiocarbon re-
cords of each site in the North American database, we use univariate
Gaussian mixture models with unequal variance. The assumption of
Gaussian models for the temporal densities of archaeological site occu-
pations logically follows from the statistical support of temporal data,
which are theoretically unbounded and continuous. Furthermore,
seriation studies empirically establish that temporal phenomena in
human cultures commonly approximate normal curves (Peeples and
Schachner, 2012).

We implement the mixture model approach using the mclust package
in R statistical computing environment (Scrucca, et al., 2023). This
approach uses the expectation-maximization (EM) algorithm to
confront the data with 1-9 mixture components (clusters), allowing for
unequal variance, and select the model that generates the greatest
Bayesian Information Criterion (BIC) value. BIC identifies the model that
simultaneously explains the most data and minimizes parameters—in this
case, Gaussian clusters. Having solved for the optimal solution for each
site, we then isolate two-occupation solutions for hypothesis testing. R
code sufficient to reproduce the dataset is included as supplemental
material.

To determine the gap between occupation pairs for each site, the
earliest date of the later occupation is subtracted from the latest date of
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the earlier occupation. This occasionally produces negative gaps,
reflecting the rare case when one cluster is identified interior to a larger
cluster. Such negative-gap two-occupation sites are removed from the
dataset. The resultant dataset of two-occupation sites includes 2,610
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radiocarbon dates from 64 archaeological sites. We further limit the
sample to the 59 two-occupation sites with 2,392 total dates ranging in
age between 500 years BP and 11,500 years BP (Table 1). The spatial
and temporal distribution of sites is shown in Fig. 6.

Table 1
Two-occupation sites and their associated calibrated radiocarbon ages extracted from the CARD database (Kelly et al. 2022).
D Site State Lat Long N Min Max Occupation 1 Occupation 2 Waiting
Dates Age Age End Age Start Age Time
6661 36MRS5 Smithfield Beach Pennsylvania 41.056916 —75.336173 35 194 4152 2726 1978 748
15245 7 K-F-11/169 Gray Farm Delaware 39.097086 —75.503073 30 125 4640 2130 1066 1064
2002 18ANS50 Pig Point Maryland 38.992333 —76.569358 30 4 9129 5308 2340 2968
6740 36TI28 Losey 3 Pennsylvania 41.773775 —77.253772 30 110 5591 3365 914 2451
6508 36CN164 Memorial Park Pennsylvania 41.24145 —77.63672 30 496 7671 1709 1110 599
6780 36WH297 Meadowcroft Pennsylvania ~ 40.188779 —80.247841 42 215 15953 5584 4905 679
Rockshelter
11259 46WD83-A West West 39.212523 —81.514126 34 1295 9551 7842 4858 2984
Blennerhassett Virginia
15602 8LL2 Mound Key Florida 26.577579 —81.921462 32 336 1997 1228 956 272
15612 8LL54 Wightman Florida 26.577579 —81.921462 40 1142 3675 2626 2361 265
1416 15BL35 Main Site Kentucky 36.735535 —83.672646 30 2344 10250 4412 3169 1243
2546 1JA305 Widows Creek Alabama 34.776174 —86.002129 55 834 4847 2108 1347 761
973 12VG1 Angel Mounds Indiana 38.023 —87.583527 63 381 2319 966 834 132
2566 1LU496 Dust Cave Alabama 34.903733 —87.647581 44 5729 12546 11186 9939 1247
2491 1BA21 Bayou St. John Alabama 30.654881 —87.754736 30 917 1534 1411 1240 171
699 11PP2/11MX2 Kincaid Illinois 37.411349 —88.573214 33 561 5749 1744 1034 710
7578 40SY1 Chucalissa Tennessee 35.1843 —89.892262 40 336 1445 871 679 192
11392 47LC95 Tremaine Wisconsin 43.907641 —91.110152 41 306 1530 1292 678 614
3288 23CY64 Arnold Research Missouri 38.836209 —91.924532 56 733 10246 3455 1995 1460
Cave
3222 23BE125 Rodger’s Shelter Missouri 38.2991 —93.288478 38 168 12610 5899 4825 1074
2943 21ML12 Wilford Minnesota 45.929539 —93.632525 31 221 1546 1354 652 702
3247 23CE426 Big Eddy Missouri 37.722485 —93.864759 51 3000 15827 8128 4997 3131
5609 34LF40 Spiro/Craig Mound Oklahoma 34.903005 —94.701145 39 4 2336 2336 1408 928
5700 34PU116 Bug Hill Oklahoma 34.415152 —95.364329 33 502 3696 1528 1214 314
1093 13ML12 House III Iowa 41.033605 —95.618292 31 568 751 636 572 64
8981 41WB557 Boiler Texas 27.770428 —99.327204 50 66 5410 1602 1296 306
8549 41KR621 Gatlin Texas 30.062193 —99.348662 47 66 7466 3669 2108 1561
8907 41VV162 Conejo Shelter Texas 29.894131 —101.1515 39 1303 7515 3524 2856 668
8970 41VV99 Arenosa Shelter Texas 29.894131 —101.1515 30 1296 10939 10939 6300 4639
8586 41LU1 Lubbock Lake Texas 33.6117 —101.81989 31 202 15090 1377 526 851
3939 25S8X115 Hudson-Meng Nebraska 42.480782 —103.77126 39 7524 11540 9400 8544 856
8705 41PS800 Arroyo de la Presa Texas 29.998304 —104.22926 38 4 7423 2892 1261 1631
14382 5JF321 Swallow site Colorado 39.587467 —105.24681 39 946 9337 1997 1785 212
14036 48WE917 NA Wyoming 43.90722 —107.68429 37 396 3961 2979 1846 1133
14687 5MF1915 Red Rose site Colorado 40.608316 —108.20244 31 293 6744 6744 3756 2988
14862 5MN4253 Schmidt site Colorado 38.405803 —108.26908 34 37 2987 1653 1347 306
19849 LA? Wind Mountain New Mexico 32.729422 —108.37932 31 615 2236 2236 1528 708
20712 LA4935 Bat Cave New Mexico 33.92386 —108.41655 32 731 6744 6396 4140 2256
13342 48SW101 Pine Springs Wyoming 41.657588 —108.89409 47 110 13743 1942 1266 676
12699 48PA201 Mummy Cave Wyoming 44.493416 —109.56323 37 469 10479 8946 8410 536
14037 48YE1 NA Wyoming 44.603293 —110.47819 31 66 10172 7631 4826 2805
12541 48LN373 Plant Wyoming 42.260038 —110.70266 41 681 10188 1996 1740 256
16352 AA:2:2 (ASM) Grewe Arizona 325 —-111.5 101 684 1408 1226 1195 31
9889 425V662 Backhoe Village Utah 38.746559 —111.79705 31 675 2108 2108 1520 588
9484 42JB394 Dust Devil site Utah 39.711399 —112.79595 32 662 9006 6787 1353 5434
9075 42B0O36 Hogup Cave Utah 41.514922 —113.09714 40 515 9336 5006 4261 745
4152 26EK13006 CrNV-11-16509 Nevada 37.785829 —117.63207 30 88 5199 2980 2387 593
4170 26EK3032 Tosawihi Quarry Nevada 37.785829 —117.63207 43 4 4538 3983 1306 2677
sites
6309 35ML65 Dirty Shame Rock Oregon 43.205538 —117.63358 37 403 12503 6650 2806 3844
Shelter
17538 CA-ORA-378 Christ College California 33.674967 —-117.7774 89 941 9411 3187 2979 208
site
16999 CA-LAN-43 Sjéaﬂtkanga, California 34.184667 —118.26199 38 112 5729 5308 1846 3462
Encino Village
18284 CA-SCLI-43 Eel Point California 32.898728 —118.49285 72 551 11249 6295 5591 704
9322 42FR? NA Washington 46.536896 —118.90477 33 299 10575 2686 2183 503
18352 CA-SCRI-333 El Monton California 34.012989 —119.72877 85 1303 6671 6214 5931 283
4344 260R3 NA Nevada 39.1669 —119.7678 33 299 1664 1401 1066 335
19037 CA-SMI-261 Daisey Cave California 34.038218 —120.36063 30 1301 12627 6846 4414 2432
17,243 CA-MNT-229NA California 36.23931 —121.31062 36 731 8452 6945 4640 2305
10739 45K1429 West Point Site Washington 47.474506 —121.84428 39 202 4056 2391 1228 1163
Complex
16502 CA-ALA-704/H Rummey Ta California 37.653853 —121.91395 31 144 2398 1844 1461 383
KuccuwiOgQ Tiprectak
10728 45JE6 Bugge Spit Washington 47.844076 —123.57579 40 1110 2769 2025 2000 25
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It is important to note that this approach will always identify a sin-
gular best-fit model, even if multiple models offer plausible fits to the
data, and thus comes with a risk of false-positive model selection.
Nonetheless, the model-based approach offers a principled, objective
procedure for occupation classification, that minimizes potential for
systematically biasing data structure.

4.3. Hypothesis testing

A visual comparison of the observed distribution of waiting times
relative to the expected distribution given by Equation (1) gives an
initial impression of whether we might reject the null hypothesis that
mobility is strictly about exploration. However, the sparsity of the
archaeological record means that small sample sizes may lead to
spurious rejection. To counter this possibility, we develop a Monte Carlo
method that allows us to construct confidence intervals for the expected
distribution of waiting times when occupations are purely exploratory.
Specifically, we simulate a Poisson occupation process generating a
location with 10 dated occupations. We then apply a fixed time window
from 500 yr BP to 11,500 yr BP (11,000 years in total) to the simulated
site and discard dated occupations that fall outside the fixed window.
We then retain the simulated locality if it has exactly two dated occu-
pations in the fixed window of observation. We repeat this process until
the number of simulated two-occupation sites is the same as the
empirical sample size in question. We then compute the waiting times
between the two occupations for each of the retained locations and
count the proportion of sites with waiting times that fall into each 250
year bin in the fixed window of observation. This constitutes one repli-
cate of the simulation.

To produce statistical expectations, we generate 1,000 replicates,
each at the observed sample size, using the above process. We then
compute the mean and variance in the proportion of sites in each waiting
time bin over all the replicates. The question of interest is whether the
observed proportion in each bin falls outside the confidence interval for
the simulated proportion. If an observed proportion does not fall outside
the confidence interval, then we cannot reject the null hypothesis that
the observation at that time scale was generated by memoryless
mobility-driven exploration. If an observed proportion falls outside the
confidence interval, then we can reject the null hypothesis and suggest
that the observation at that time scale was generated by mobility-driven
exploitation. We note that the per bin comparison is similar to evaluating
m hypotheses, where m is the number of bins. We therefore apply a
Bonferroni correction to the confidence intervals to guard against
spurious rejections of the null hypothesis (Bland and Altman, 1995). A
Mathematica notebook sufficient to reproduce the results is included in
the supplementary online material.
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4.4. Cautionary notes

It is important to identify some of the important challenges with
these data before presenting results. First, the data scrubbing process
yielded a sample of dates representing just 2.3 % of the total CARD
database. The resulting sample thus is certainly unrepresentative of the
broader radiocarbon record, leaving aside general coverage concerns in
CARD overall. Younger sites are almost certainly over-represented as a
result of both sampling and taphonomic biases. Sites in the West may be
over-represented due to abundance of Federal land relative to the East.
These limitations are not easily rectified at present and therefore the
observations we make based on the CARD data should be treated with
caution.

Second, our approach to clustering of dates into occupations is
justified on strictly on statistical grounds. A “dirt archaeologist” could
certainly look skeptically at the approach and would likely arrive at
different occupation clusters based on stratigraphy and other site-based
criteria. However, the context-heavy approach is problematic at scale
given the complex inferences involved in stratigraphic analysis and the
variability in published evidence from hundreds of sites in CARD. While
rigorous field observation of stratigraphy is still an irreplaceable part of
archaeological research, three decades of micromorphological and
refitting studies have taught us that some important elements of site
occupational histories may simply be undetectable to the naked eye. The
data-driven clustering approach used here has the advantage that it is
consistent across sites and replicable. Nevertheless, the date clusters we
identify are perhaps best thought of as “meta-occupations.” But the
reader should be aware that statistically-defined occupations may
combine materials from more than one occupation defined based on
macroscopic field observation, or they may split materials into separate
occupations that would otherwise be combined. Thus, our use of the
term “occupation” should not be conflated with activity-cultural-
stratigraphic occupations as understood using other classification
methods. Future work might fruitfully compare the different
approaches.

Finally, we note that the resulting collection of dates combine
archaeological materials from a range of cultural contexts that include
both dedicated foragers as well as horticulturalists. While this might
strike some readers as odd, it is entirely consistent with a macro-
archaeological (as well as macroecological/evolutionary) approach that
aggregates across spatial, temporal and cultural (taxonomic) scales to
reveal emergent patterns (McGill, 2019; Perreault, 2019; Smith, et al.,
2008). We do not consider mobility to be a typological feature that only
applies to foragers. Thus, the distinction between adaptive exploration
and exploitation is not limited to the study of foragers. It is equally
applicable to what would traditionally be considered more sedentary
lifeways at the time scales we are interested in (e.g., Bocinsky, et al.,
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Fig. 6. Spatial and temporal distribution of the 59 two-occupation sites examined. (A) An arbitrary partition of the sites into Eastern and Western groups is shown.
(B) The temporal distribution plots ages for the oldest occupation in each two-occupation site and the chronological partition used for assessing change through time

in reoccupation dynamics.
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2016). Nevertheless, the observations offered below are meant to be
broadly relevant to the macroarchaeological understanding of mobility-
driven land use separate from specific geographic, temporal and cultural
processes that might also be at play.

4.5. Results

Fig. 7 presents the frequency distribution of waiting times between
occupations for North American archaeological sites with exactly two
occupations. The total sample includes 59 unique sites. Waiting times
are binned into 250 year intervals over the 11,000 year fixed window of
observation. There are m = 44 such bins in total, which features in a
Bonferroni correction of 1 —a/m and corresponds to a confidence in-
terval of approximately 99.8 %.

The observed distribution is strongly clustered at short waiting time
intervals. The longest observed waiting time was 5,434 years from Dust
Devil Cave, Utah. The shortest observed waiting time, while still
constituting two discrete occupations, was 25 years from the Bugge Spit
site, Washington. The clustering at short intervals, and the absence of
waiting times at very long intervals, in general is quite different from the
expected trend for “exploratory” mobility. However, considering the
relatively small sample size, we can only reject the null hypothesis for
the shortest waiting times of 250, 500 and 750 years between occupa-
tions. These are the only bins that fall outside the confidence intervals
for the memoryless process. All other observed waiting times fall within
the confidence interval envelope suggesting that these reflect explor-
atory mobility.

We now consider whether there are any emergent geographic dif-
ferences in the temporal data. The distribution of the 59 two-occupation
sites across the continental USA is consistent with a spatially random
Poisson point process (ChiSquare = 11.579, p = 0.314219). Thus, there
are no natural clusters to compare. Nevertheless, we impose an arbitrary
divide between Eastern and Western sites and examine the waiting time
distributions within each grouping (Fig. 8). The results from the two
regions are broadly similar to the aggregate sample. To the extent that
there are reoccupation waiting times that deviate from the null expec-
tations, these are for shorter time scales. Among the 24 Eastern sites we
see reoccupation waiting times of 750 and 1,250 years that fall outside
the confidence interval for mobility-driven exploration. Among the 35
Western sites we see reoccupation waiting times of 500 and 750 years
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0.25

theory with 99.8% ClI
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Fig. 7. Observed and expected waiting times between occupations for 59 two-
occupation North American archaeological sites dated between 500 yr BP and
11,500 yr. BP. Only sites with at least 30 dates are considered. Observed
waiting times between occupations of 250, 500, and 750 years greatly exceed
the expected frequency for “exploratory” mobility. The conclusion is that
reoccupation on these time scales represent “exploitation.” Waiting times
longer than 750 years are consistent with repeated occupations driven by
memoryless “exploratory” mobility.
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that fall outside of the confidence interval. In both cases, for all other
times scales we cannot reject the null hypothesis that reoccupation re-
flects mobility-driven exploration.

We are similarly interested in whether there is variation over time in
the prevalence of mobility-driven exploration and mobility-driven
exploitation. It is entirely plausible that the balance of these two
mobility strategies would change over the course of 11,000 years,
particularly given that the mix of horticultural adaptations increased
over this time relative to dedicated foraging adaptations. We use K-
Means clustering to partition the dated occupations shown in Fig. 6
(above) into two groups dating before and after 5,000 years BP.
Importantly, this partition is based solely on the statistical properties of
the date distribution and is not meant to coincide with any culture-
historical or environmental event.

Fig. 9 shows the fixed window counts for two-occupation sites dated
before 5,000 years BP (a 6000 year fixed window), the sites younger
than 5,000 years BP (using a 4,500 year fixed window). The oldest
cluster of sites displays temporal reoccupation patterns that are largely
consistent with mobility-driven exploration. However, there are four
sites (20 % of the sample) that show reoccupation on a time scale of
2,750 years, which falls outside of the expected frequency for mobility-
driven exploration. Though statistically significant, the deviation is hard
to align with any theoretical reason why repeated exploitation of these
environments would occur at time-scales of around 2,700 years and not
shorter time scales. Since four sites involved have earliest occupations
that date between approximately 7,800 and 5,300 years BP, the reoc-
cupation pattern would not appear to be an artifact of imprecision in the
radiocarbon calibration curve such as the 2450 4C BP Hallstatt Plateau
(Jacobsen et al. 2017).

For sites dating after 5,000 BP there is more apparent clustering of
short waiting times between reoccupations at the same site. Specifically,
there is a peak in reoccupation waiting times of 750 years consistent
with mobility-driven exploitation. Waiting times of 250 and 500 years
are also above the expected mean for mobility-driven exploration, but
we cannot reject the null hypothesis due to the small sample size.

5. Discussion & Conclusions

We began this paper with the controversial suggestion that most
micro-scale differences in mobility regimes, though obvious perhaps in
ethnographic contexts, are largely invisible in archaeological context.
The limits of geochronological methods and the pernicious effects of site
formation processes mean that mostly we are dealing with time-
averaged deposits that mask most of the variation that would be use-
ful for closely dissecting mobility. Thus, we suspect it is very hard if not
impossible to make clear distinctions between archaeological materials
that reflect mobility dedicated to search within patches versus mobility
dedicated to travel between them as required, for example, by the
Marginal Value Theorem (Charnov, 1976). We argued that a shift to
location-based analyses is therefore appropriate to the quality of the
archaeological record (Perreault, 2019). However, this focus on loca-
tions also necessitates a shift in the questions we ask about forager
mobility. The suggestion here was that we can seek to detect differences
between mobility oriented around exploration and that oriented around
exploitation in a macroarchaeological measure of the waiting time be-
tween site occupations. These ideas are well-defined in approaches to
machine learning as well as evolutionary theory. Thus, adaptive explo-
ration was suggested to entail “memoryless” mobility, where occupa-
tions at any one time and place were independent of the time and place
of all prior occupations and exerted no influence on the time and place of
future occupations. To see why this arguably extreme strategy facilitates
exploration consider that, in the absence of any memory or history, there
can be no bias to steer foragers towards (or away from) any one patch. If
all patches are of equal quality, then eventually all patches (in a finite
environment) will be visited and, given enough time, all patches will be
visited an equal (infinite) number of times. The entirety of space is
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Fig. 8. Comparison of geographic patterns across (A) Eastern and (B) Western groups of sites (see Fig. 6). For Eastern sites mobility-driven exploitation is suggested
at time scales of 750 years and (marginally) 1,250 years. For Western sites, mobility-driven exploitation is suggested at time scales of 500 and 750 years. All other

reoccupation time scales are consistent with mobility-driven exploration.
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Fig. 9. Analyses for chronological groupings of the 59 two-occupation sites. Groupings were determined by K-Means clustering which (A) A total of 20 sites with
exactly two occupations date older than 4,500 years BP. (B) A total of 39 sites with exactly two occupations date younger 4,500 years BP. For sites older than 4,500
years BP the counting window is 6,000 years. For sites younger than 4,500 years BP the counting window is 4,500 years.

guaranteed to be explored under these circumstances. If patches differ in
quality, then all patches that can support humans will be occupied at
some point, and the frequency of occupations will be proportional to
patch quality in the long run.

By contrast, when foragers engage in adaptive exploitation, occu-
pations at one point in time trigger changes (or transitions) in occupa-
tion rates for future points in time. For example, if foragers engage in
niche construction that improves patch quality, then this improvement
would show up as an increase in the occupation rate and repeated oc-
cupations that occurs sooner than would be expected under the condi-
tions that existed prior to the instance of niche construction.
Occupations that produce lasting degradation or depletion of a patch
would show up as a decrease in the occupation rate and times between
reoccupations that are longer than would be expected under the prior
conditions.

As interesting as these models may be, do they generate patterns that
might be the subject of empirical archaeological investigation? On the
face of it, spatial clustering of sites in some locations suggests that
archaeological populations revisited known locations that were valued
in some way (due to access to natural resources for example, or because

materials left behind could be re-used). However, the simulations pre-
sented here suggest that we need to interpret spatial clustering of sites
with caution. Both adaptive exploration and adaptive exploitation can
generate spatial clustering of archaeological occupations. Spatial pat-
terns alone are not sufficient to tell us if foragers routinely “remem-
bered” a network of favored locations and utilized those preferentially
(Freeman, et al., 2019). Temporal patterns of occupation seem more
promising for making such distinctions. Adaptive exploration, as defined
here, produces waiting time distributions for occupations (specifically
for 2-repeats) that can be predicted exactly by theory (see Short, et al.,
2009). The expected frequency of 2-repeat waiting times decreases lin-
early with the length of the waiting time. Adaptive exploitation is
identified primarily by how it deviates from the expected pattern for
adaptive exploration. Specifically, when occupations drive transitions to
higher occupation rates—as we might expect in cases of niche con-
struction—this appears empirically as a greater frequency of shorter
waiting times between occupations than would be the case with adap-
tive exploration.

How should we interpret findings adaptive exploration or adaptive
exploitation? An empirical case consistent with an emphasis on adaptive
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exploration might lead us to conclude that human mobility strat-
egies—though possibly optimally planned at an ethnographic-scale-
—end up being random or unplanned at a macroarchaeological scale. A
substantial degree of randomness at aggregate scales may be why formal
diffusion models—in the sense of gas or particle systems—often do a
reasonably good job of describing animal dispersal (Turchin, 1998).
Though this interpretation seems antithetical to the traditional study of
forager mobility, recall that successful adaptations require variation to
avoid getting stuck. Exploration—in the sense of mobility that under-
taken independent of the history of past occupations—might be a source
of such variation. At a macroscopic scale, a strategy dominated by
random occupation of random patches at random times might produce
more adaptive benefits over the long-run than strict exploitation stra-
tegies. By contrast, if an empirical case is consistent with only adaptive
exploitation, then one interpretation is that mobility strategies incor-
porate multigenerational learned behavior (i.e., culture) or substantial
environmental modification (i.e., niche construction) both operating at
a macroscopic scale. Occupations of a patch at one time may produce
cultural knowledge that biases the timing of reoccupation of that patch,
perhaps centuries later. The temptation is to imagine the relevant
learned behavior concerns things like instantaneous patch quality in-
formation (Bettinger and Grote, 2016), though this is an ethnographic-
scale framing that we resist. Alternatively, cultural knowledge in the
form of relatively simple heuristics or rules (Ross, et al., 2018) might
feasibly operate over many generations to influence patch occupation
decisions in ways that appear as adaptive exploitation.

At evolutionary time scales, we might expect macroscopic mobility
to shift generally from exploration- to exploitation-dominant. Such
might follow the long-term evolution of cognitive and social learning
systems that favor greater reliance on cumulative culture (Paige and
Perreault, 2024). The culmination in exploitation-dominant strategies is
perhaps inherent to the global shift towards greater population seden-
tism during the Holocene (Bocinsky, et al., 2016). It is less clear that
there should be any particular directionality in the reliance on explo-
ration versus exploitation over the course of the Middle and Late
Pleistocene. Rather, one might expect a trend towards greater flexibility
involving reliance on exploration when environmental conditions are
volatile and exploitation when conditions are stable (Rendell, et al.,
2010). Spatially, we might encounter regions that are more suitable for
exploration-dominant strategies and others exploitation-dominant. In
other words, exploration may yield greater adaptive benefits in some
environments and exploitation in others. However, more work will be
needed to try and tease the possibilities apart.

The empirical case study introduced here is just a first attempt at
using dated multi-occupation archaeological sites to disentangle
macroscopic mobility strategies. We used the CARD radiocarbon data-
base to create a sample of 59 sites with at least 30 radiocarbon dates and
exactly two occupations observed over a time window fixed between
500 years BP and 11,500 years BP. Though this is a small, imperfect
sample, it was enough to suggest that waiting times between occupa-
tions were distributed unlike a pure “exploration” strategy. Specifically,
waiting times of 250, 500 and 750 years between occupations occur at
much higher frequencies than would be expected in a memoryless
mobility strategy. The suggestion is that these data reflect a bias towards
adaptive exploitation over exploration. However, this is not true for
longer waiting times which are consistent with exploration being the
primary driver of reoccupation of these sites. We tentatively conclude
that mobility-driven “exploitation” is indicated over periods of < 1000
years. This may suggest something about the “half-life” of processes that
preferentially draw foragers back into attractive locations, above and
beyond what would be expected from pure exploration. Such features
may be durable improvements that are independent of the groups
exploiting the environment. For example, in aggrading environments,
necessary for formation of stratigraphically differentiated occupations,
features or materials left by previous occupants of a locality do not stay
on the surface forever. In the absence of physical niche construction, it
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could be that some kinds of socially transmitted knowledge about
attractive patches has a “half-life” measurable in centuries. Finally, the
mechanism might be dependent upon external environmental change
such that discrete patches remain attractive for about 1000 years before
further exploration becomes necessary. However, this last possibility
requires more modeling to address in any detail (see below).

Examination of the data in geographic and chronological groups does
not substantially change our observations. Eastern and Western groups
of sites display very similar patterns suggestive of mobility-driven
exploitation on time scales < 1,000 years. Sites grouped chronologi-
cally based on the age of the oldest occupation present a somewhat
different pattern. Older sites are mostly consistent with mobility-driven
exploration, though a surprising peak in reoccupation at time scales of
2,700 years is difficult to explain. Younger sites may suggest stronger
clustering around shorter waiting times for reoccupation. This appears
to be the case when looking at all of the sites younger than 4500 years
BP, but not so when looking at those sites younger than 2500 BP. We
suspect that taphonomic biases may play a significant role in the
observed pattern (see below).

Though we suggest some interesting possibilities about the nature of
macroscopic mobility strategies, a number of limitations inherent to the
present study must be considered. The first concerns the theoretical
basis for using waiting times between occupations as a macro-
archaeological measure of mobility. Clearly a range of ecological and
environmental factors play a role in occupation initiation and aban-
donment. However, mobility is a proximate mechanism driving the ac-
tivity at particular places that ultimately accumulates as an
archaeological record. We suggest that this general fact is true across the
full spectrum of ethnographic-scale mobility regimes such that we can
simply point to occupation patterns across time as being a product of
mobility, at least in part. It is possible that many other causal processes,
including post-depositional taphonomic processes, may obscure or
“cancel out” any effects of mobility in driving occupation patterns.
Positively, perhaps, the counting methods presented here are conser-
vative in that causal processes pulling in different directions would tend
to result in patterns consistent only with adaptive exploration. Thus, one
could interpret findings consistent with “adaptive exploration” as a
neutral or null result where there is no evidence for adaptive exploita-
tion of a landscape or, equivalently, the biases in the record are such that
we cannot reject the hypothesis that the record simply preserves occu-
pations at random times (Brantingham, 2003).

The second limitation concerns modeling assumptions about sta-
tionary environmental conditions, specifically that environments are
composed of different patches that do not change in spatial location or
quality over time. This assumption is useful for demonstrating that
clustering of occupations in space does not necessarily represent adap-
tive exploitation, and that spatial clustering of occupations can also be
generated entirely by memoryless adaptive exploration (see also Short,
et al., 2009). We expect, however, that change through time in patch
qualities could mimic an exploitation mobility strategy. For example,
memoryless occupations that occur on either side of an environmental
change, where improving patch qualities drive an increase in indepen-
dent occupation rates from 1, = 0.001. to 13 = 0.004, will appear to
have shorter than expected waiting times that look like adaptive
exploitation if constant environments are assumed. The opposite holds if
patches deteriorate, producing independent occupation rates that fall
from A3 = 0.004 to A3 = 0.001. Here occupations will appear to have
longer waiting times compared with a stationary environment. In both
cases, the environmental change driving occupation rates is exogenous
to the mobility regime and therefore suggests nothing about learned
patterns of adaptive exploitation. In practice, fixed window counts of
waiting times between occupations can be conditioned on environ-
mental (or other) covariates (Park, et al., 2021), but more work is
needed to develop this approach. Given the current limitations, how-
ever, it is likely that the North American radiocarbon record examined
here likely overestimates the prevalence of an exploitation strategy.
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Correcting for environmental change would likely remove some of the
apparent deviations from Poisson expectations.

A third set of limitations stems from uncertainties in geochronology
(including irregularities in radiocarbon calibration) and the effects of
site formation processes. We invoked these challenges as motivation to
shift to a location-based macroscopic scale of analysis, but they are still
likely to have had an impact in the empirical testing at this scale as well.
For example, the shape of the calibration curve over certain age ranges
may make reoccupation times appear shorter or longer than was the case
on the ground. Thus, radiocarbon calibration alone might drive patterns
that appear like exploration or exploitation using our methodology.
Similarly, we treated the dating of archaeological occupations as
generating neat minimum and maximum ages of occupation, which
obviously is far from realistic. Incorporating dating uncertainty into the
counting models is possible but will require more work. We also need to
account for taphonomic destruction of archaeological occupations and
mixing of deposits. The last and first appearance dates of archaeological
occupations, akin to the “last appearance datum” [LAD] and “first
appearance datum” [FAD] in paleontology, are subject to taphonomic
and sampling biases that generally cause the former (LAD) to appear
older than the true age of last appearance and the latter (FAD) to appear
younger than the true age of first appearance (Marshall, 2019; Perreault,
2011). However, it is unclear whether this would simply tend to dampen
the signal of adaptive exploitation—making the aggregate pattern look
more like adaptive exploration—or would produce occupation patterns
that are lagged longer than would be expected by chance alone. Our
approach to the North American archaeological record was to include
only sites that have at least 30 radiocarbon dates, which hopefully re-
duces (though certainly does not eliminate) the error in waiting time
estimates (Perreault, 2011). More generally, it is well known that there
is a strong “pull-of-the present” inherent to the archaeological record
(Surovell and Brantingham, 2007; Surovell, et al., 2009). In the present
context, this means that older two-occupation sites are likely to be un-
derrepresented and younger two-occupation sites overrepresented in
any given sample due to taphonomic destruction alone. Younger two-
occupation sites are constrained to having relatively short reoccupa-
tion times, while older sites may have short or long reoccupation times.
Thus, a sample dominated by younger sites counted with a wide fixed
window may appear to favor mobility-driven exploitation when in fact
mobility-driven exploration was dominant. Untangling how taphonomic
processes impact the counting methods introduced here will require
more modeling work.

More challenging is the effect of researcher choices, which may
substantially impact what we know about archaeological occupations.
Consider a simple scenario of an archaeological site with three discrete
occupations dated as t; > tp > t3. Assume that the researcher produces
only two dates from the site. The dating will make the site look like a 2-
repeat and, to add the problem, there are three possible 2-repeats that
might be presented (i.e., 7 = t; — t; or t3 — ty or t3 — t;). Under ideal
circumstances, such researcher choices would be random and indepen-
dent across sites and projects. But, to the extent that they are not, it may
bias waiting time distributions in unexpected ways. One could seek to
model such biases, though it will probably be necessary to scrutinize the
empirical record to identify and control for the actual effects of
researcher bias. In the present case, we have sought to minimize this
problem by focusing on sites with large numbers of radiocarbon dates,
giving the greatest possibility of identifying all discrete occupations.
However, the combined effect of research choice as well as methodo-
logical variability means that aggregate databases such as CARD involve
compounded errors, which raises questions about dates-as-data ap-
proaches to archaeological modeling (Becerra-Valdivia, et al., 2020).
However, macroarchaeological approaches are dependent upon aggre-
gate datasets that cover the spatial, temporal and cultural scales at
which macroscopic ecological and evolutionary processes are likely to
operate. We conclude that it is still better to attempt to test a model with
imperfect data than to just simulate a world as we would like it to be and

11

Journal of Archaeological Science: Reports 61 (2025) 104895

call it a day.
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